Adults of the lubber grasshopper (Romalea guttata) secrete increased amounts of catechol from their defensive glands when fed diets containing only catnip leaves (Nepeta cataria). Model compound bioassays showed that these insects were able to sequester and biomagnify simple phenols, such as catechol and hydroquinone, in their defense gland secretions. Excessive catechol secretions from caffeic acid-fortified diets indicated metabolic pathways exist to perform efficiently more complex biochemical conversions. Reverse-phase HPLC of methanol extracts of catnip revealed only one major caffeoyl-polyphenol as a possible precursor for the observed elevated catechol secretions, when this plant is fed to lubbers. The compound was shown to be caffeoyltartronic acid (CTA). During analysis of CTA by probe-MS or gas chromatography (of its silylated derivative), CTA decomposed by loss of carbon dioxide to form caffeoylglycolic acid (CGA), making identification by these methods ambiguous. Only fast atom bombardment mass spectrometry (FAB-MS, negative mode) gave a true molecular weight. Groundivy (Glecoma hederacea), a relative of catnip, was also shown to contain CTA. The mung bean (Phaseolus radiatus=Vigna radiata), a species totally unrelated to catnip, is the only other reported plant source of CTA. Catnip leaves were found to contain about twice as much CTA as mung bean leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00983799DOI Listing

Publication Analysis

Top Keywords

caffeoyltartronic acid
8
nepeta cataria
8
lubber grasshopper
8
grasshopper romalea
8
romalea guttata
8
catnip leaves
8
catechol secretions
8
cta mung
8
mung bean
8
catnip
6

Similar Publications

Antioxidant caffeic acid derivatives from leaves of Parthenocissus tricuspidata.

Arch Pharm Res

March 2004

Medicinal Chemistry Research Center, Division of Life Sciences, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea.

Five caffeic acid derivatives; methyl ester of caffeoylglycolic acid (1), dimethyl ester of caffeoyltartaric acid (2), dimethyl ester of caffeoyltartronic acid (3), monomethyl ester of caffeoyltartronic acid (4), methyl ester of caffeic acid (5), and some other secondary metabolites including; quercetin, quercetin 3-O-beta-D-glucuronide methyl ester, kaempferol, 3,5,7,4'-O-tetramethylkaempferol, beta-sitosterol glucoside, 2alpha-hydroxyursolic acid and 2,24-dihydroxyursolic acid, have been isolated and characterized. All the isolated compounds were characterized with the help of NMR spectroscopy and mass spectrometry. Structure of compound 3 was also confirmed by a single X-ray crystallographic technique.

View Article and Find Full Text PDF

Adults of the lubber grasshopper (Romalea guttata) secrete increased amounts of catechol from their defensive glands when fed diets containing only catnip leaves (Nepeta cataria). Model compound bioassays showed that these insects were able to sequester and biomagnify simple phenols, such as catechol and hydroquinone, in their defense gland secretions. Excessive catechol secretions from caffeic acid-fortified diets indicated metabolic pathways exist to perform efficiently more complex biochemical conversions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!