Sequential rooting media and rooting capacity of Sequoiadendron giganteum in vitro. Peroxidase activity as a marker.

Plant Cell Rep

Laboratoire de Phytomorphogenèse, Université de Clermont II, 4, rue Ledru, F-63038, Clermont-Ferrand, France.

Published: October 1987

AI Article Synopsis

Article Abstract

The rooting capacities of tips of seedling, juvenile and mature shoots of Sequoiadendron giganteum were compared on different rooting media (inductive and expressive media) after passage on an elongating medium. None of the cuttings rooted when continuously kept on medium containing the auxin NAA and vitamin D2. Peroxidase activity of all those cuttings on NAA+D2 first increased during the 7-9 first days and decreased in the days after. Rooting was obtained by transfer of the cuttings after periods longer than 7-9 days from the NAA+D2 inductive medium to a basal medium supplemented or not with rutin (expressive medium). The rooting capacity was emphasized by rutin treatment and was in correlation with the peroxidase peak reached on the NAA+D2 medium. Seedlings, characterised by the highest peroxidase activity, were most performing in rooting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00269555DOI Listing

Publication Analysis

Top Keywords

peroxidase activity
12
rooting media
8
rooting capacity
8
sequoiadendron giganteum
8
7-9 days
8
rooting
6
medium
6
sequential rooting
4
media rooting
4
capacity sequoiadendron
4

Similar Publications

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.

View Article and Find Full Text PDF

Regulation of enzymatic lipid peroxidation in osteoblasts protects against postmenopausal osteoporosis.

Nat Commun

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.

Oxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts.

View Article and Find Full Text PDF

Nanozymes are next generation of enzyme mimics. Due to the lack of activity descriptors, most nanozymes were discovered through trial-and-error strategies or by accident. While eg occupancy in an octahedral crystal field was proven as an effective descriptor, the t2 in a tetrahedral crystal field has rarely been explored.

View Article and Find Full Text PDF

A comprehensive study of liver-gut microbiota and antioxidant enzyme activity mediated regulation of late-laying hens by high and low residual feed intake.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Residual feed intake (RFI) is a better indicator of feed efficiency than feed conversion ratio (FCR). It is frequently used to evaluate the efficacy of poultry and livestock feed consumption. Generally, Low RFI (LRFI) is associated with better feed conversion efficiency, whereas high RFI (HRFI) suggests poorer feed conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!