Callus derived protoplasts of Brachycome dichromosomatica (2n=2x=4) and Crepis capillaris (2n=2x=6) have been regenerated into karyologically normal plants, i.e. plants without visible alterations of the diploid chromosome set. However, metaphase analysis of protoplast cultures derived from both callus as well as mesophyll cells showed karyological changes in the overwhelming majority of cells in both species leading to multinucleated, polyploid and aneuploid cells. Furthermore, callus derived protoplasts sometimes exhibited changes at the chromosome level as indicated by translocations. The vast majority of aberrant karyotypes arose from failures during mitosis and cytokinesis, pointing to inadequate microtubules as a possible underlying cause. Karyological events of the kind described herein greatly affect the plating efficiency of isolated protoplasts and the viability of protoplast derived calli. Plant regeneration, although demonstrated in this study for the first time in both species, seems to be limited to rarely occurring, protoplast-derived colonies with a relatively stable genome. Our experiments, performed with chromosomal model species, emphasize the need for controlled, non-mutagenic culture conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00266999 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, St. Jagiellonska 28, Katowice, 40-032, Poland.
Background: Due to the totipotency of plant cells, which allows them to reprogram from a differentiated to a dedifferentiated state, plants exhibit a remarkable regenerative capacity, including under in vitro culture conditions. When exposed to plant hormones, primarily auxins and cytokinins, explant cells cultured in vitro can undergo differentiation through callus formation. Protoplast culture serves as a valuable research model for studying these processes in detail.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, Australia.
Canola ( L.) is a valuable oilseed crop worldwide. However, trait improvement by breeding has been limited by its low genetic diversity and polyploid genetics.
View Article and Find Full Text PDFBMC Biotechnol
November 2024
School of Life Sciences, Anhui University, Hefei, 230601, China.
Background: The laccase Lcc9 from Coprinopsis cinerea has optimal catalytic activity at moderate to alkaline pH conditions, making it invaluable for industrial applications. However, C. cinerea naturally secretes Lcc9 at low expression levels, which limits the industrial application of Lcc9 on a large scale.
View Article and Find Full Text PDFPlant Cell Rep
October 2024
Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!