Physical complications in acute lung injury survivors: a two-year longitudinal prospective study.

Crit Care Med

1Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. 2Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD. 3Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD. 4Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD. 5Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD. 6Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA. 7Division of Pulmonary and Critical Care Medicine, University of Maryland, Baltimore, MD. 8Johns Hopkins University School of Nursing, Baltimore, MD. 9Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD. 10Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD. 11Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD.

Published: April 2014

Objective: Survivors of severe critical illness frequently develop substantial and persistent physical complications, including muscle weakness, impaired physical function, and decreased health-related quality of life. Our objective was to determine the longitudinal epidemiology of muscle weakness, physical function, and health-related quality of life and their associations with critical illness and ICU exposures.

Design: A multisite prospective study with longitudinal follow-up at 3, 6, 12, and 24 months after acute lung injury.

Setting: Thirteen ICUs from four academic teaching hospitals.

Patients: Two hundred twenty-two survivors of acute lung injury.

Interventions: None.

Measurements And Main Results: At each time point, patients underwent standardized clinical evaluations of extremity, hand grip, and respiratory muscle strength; anthropometrics (height, weight, mid-arm circumference, and triceps skin fold thickness); 6-minute walk distance, and the Medical Outcomes Short-Form 36 health-related quality of life survey. During their hospitalization, survivors also had detailed daily evaluation of critical illness and related treatment variables. Over one third of survivors had objective evidence of muscle weakness at hospital discharge, with most improving within 12 months. This weakness was associated with substantial impairments in physical function and health-related quality of life that persisted at 24 months. The duration of bed rest during critical illness was consistently associated with weakness throughout 24-month follow-up. The cumulative dose of systematic corticosteroids and use of neuromuscular blockers in the ICU were not associated with weakness.

Conclusions: Muscle weakness is common after acute lung injury, usually recovering within 12 months. This weakness is associated with substantial impairments in physical function and health-related quality of life that continue beyond 24 months. These results provide valuable prognostic information regarding physical recovery after acute lung injury. Evidence-based methods to reduce the duration of bed rest during critical illness may be important for improving these long-term impairments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959239PMC
http://dx.doi.org/10.1097/CCM.0000000000000040DOI Listing

Publication Analysis

Top Keywords

acute lung
20
critical illness
20
health-related quality
20
quality life
20
muscle weakness
16
physical function
16
lung injury
12
function health-related
12
physical complications
8
prospective study
8

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination.

Inflammation

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.

View Article and Find Full Text PDF

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.

View Article and Find Full Text PDF

Background: Illness severity, comorbidity, fever, age and symptom duration influence antibiotic prescribing for respiratory tract infections (RTI). Non-medical determinants, such as patient expectations, also impact prescribing.

Aim: To quantify the effect of general practitioners' (GPs') perception of a patient request for antibiotics on antibiotic prescribing for RTI and investigate effect modification by medical determinants and country.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!