Gamma-aminobutyric acid (GABA) is the major inhibitory amino acid neurotransmitter in the brain and is primarily responsible for modulating excitatory tone. Clinical neuroimaging studies show decreased GABA levels in the anterior cingulate of patients with mood disorders, including major depressive disorder. Chronic unpredictable stress (CUS) is an animal model thought to mimic the stressful events that may precipitate clinical depression in humans. In this study male Sprague-Dawley rats were subjected to a modified CUS paradigm that used a random pattern of unpredictable stressors twice daily for 10 days to explore the early developmental stages of depression-like endophenotypes. Control rats were handled daily for 10 days. Some rats from each treatment group received an injection of ketamine (40 mg/kg) after the final stressor. One day following the final stressor rats were tested for behavioral effects in the forced swim test and then euthanized to collect trunk blood and anterior cingulate brain samples. GABA levels were measured in anterior cingulate samples ex vivo using proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T. Animals subjected to CUS had lower body weights, higher levels of blood corticosterone, and increased immobility in the forced swim test; all of which suggest that the stress paradigm induced a depression-like phenotype. GABA levels in the anterior cingulate were significantly increased in the stressed animals compared to controls. Administration of ketamine on the last day of treatment blunted the depression-like behavior and increased GABA levels in the anterior cingulate following CUS. These data indicate that stress disrupts GABAergic signaling, which may over time lead to symptoms of depression and ultimately lower basal levels of cortical (1)H-MRS GABA that are seen in humans with depression. Furthermore, the data suggests that ketamine modulates cortical GABA levels as a mechanism of its antidepressant activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2013.11.003 | DOI Listing |
Nat Commun
December 2024
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Max Smart Super Specialty Hospital, New Delhi, IND.
Introduction: Vitamin D deficiency is an important problem when facing a viral disease. Vitamin D deficiency is widely prevalent in India and plays an important role in immunoregulation. The deficiency can lead to severe viral infections.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.
Introduction: Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex.
Method: To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS.
Sci Rep
December 2024
Department of Clinical Medicine, North Sichuang Medical College, Nanchong, 63700, Sichuan Province, China.
Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!