The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular (13)C-(13)C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944376 | PMC |
http://dx.doi.org/10.1016/j.jmb.2013.11.010 | DOI Listing |
J Pharm Sci
January 2025
Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:
In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.
View Article and Find Full Text PDFBiochem J
January 2025
Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, 50134 Florence, Italy.
Advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryoEM) have revealed the polymorphic nature of the amyloid state of proteins. Given the association of amyloid with protein misfolding disorders, it is important to understand the principles underlying this polymorphism. To address this problem, we combined computational tools to predict the specific regions of the sequence forming the β-spine of amyloid fibrils with the availability of 30, 83 and 24 amyloid structures deposited in the Protein Data Bank (PDB) and Amyloid Atlas (AAt) for the amyloid β (Aβ) peptide, α-synuclein (αS), and the 4R isoforms of tau, associated with Alzheimer's disease, Parkinson's disease, and various tauopathies, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Kavli Energy NanoScience Institute, University of California, Berkeley, California 94720, United States.
We have developed a polyethylenimine-functionalized covalent organic framework (COF) for capturing CO from the air. It was synthesized by the crystallization of an imine-linked COF, termed imine-COF-709, followed by linkage oxidation and polyamine installation through aromatic nucleophilic substitution. The chemistry of linkage oxidation and amine installation was fully characterized through Fourier transform infrared spectroscopy, elemental analysis, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy.
View Article and Find Full Text PDFStructure
December 2024
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA. Electronic address:
Biophys Chem
November 2024
RIKEN, RIKEN Center for Biosystems Dynamics Research (BDR), Yokohama 230-0045, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
Solid-state NMR (ssNMR) methods have continued to be developed in recent years for the efficient assignment of signals and 3D structure modeling of biomacromolecules. Consequently, we are approaching an era in which vigorous applications of these methods are more widespread in research, including functional elucidation of biomacromolecules and drug discovery. However, multidimensional ssNMR methods are not as advanced as solution NMR methods, especially for automated data analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!