An EEG Finger-Print of fMRI deep regional activation.

Neuroimage

The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.

Published: November 2014

This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2013.11.004DOI Listing

Publication Analysis

Top Keywords

eeg finger-print
8
fmri deep
8
improved eeg
8
eeg data
8
sub-cortical regions
8
regions amygdala
8
eeg
7
fmri
6
activity
5
finger-print fmri
4

Similar Publications

Exposure to repeated sexual trauma, particularly during childhood, often leads to protracted mental health problems. Childhood adversity is specifically associated with complex posttraumatic stress disorder (PTSD) presentation, which is particularly tenacious and treatment refractory, and features severe emotion dysregulation. Augmentation approaches have been suggested to enhance treatment efficacy in PTSD thus integrating first-line psychotherapy with mechanistically informed self-neuromodulation procedures (i.

View Article and Find Full Text PDF

Aim: Childhood sexual abuse (CSA) among women is an alarmingly prevalent traumatic experience that often leads to debilitating and treatment-refractory posttraumatic stress disorder (PTSD), raising the need for novel adjunctive therapies. Neuroimaging investigations systematically report that amygdala hyperactivity is the most consistent and reliable neural abnormality in PTSD and following childhood abuse, raising the potential of implementing volitional neural modulation using neurofeedback (NF) aimed at down-regulating amygdala activity. This study aimed to reliably probe limbic activity but overcome the limited applicability of functional magnetic resonance imaging (fMRI) NF by using a scalable electroencephalogram NF probe of amygdala-related activity, termed amygdala electrical-finger-print (amyg-EFP) in a randomized controlled trial.

View Article and Find Full Text PDF

Development and validation of an fMRI-informed EEG model of reward-related ventral striatum activation.

Neuroimage

August 2023

Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; Sackler School of Medicine, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel. Electronic address:

Reward processing is essential for our mental-health and well-being. In the current study, we developed and validated a scalable, fMRI-informed EEG model for monitoring reward processing related to activation in the ventral-striatum (VS), a significant node in the brain's reward system. To develop this EEG-based model of VS-related activation, we collected simultaneous EEG/fMRI data from 17 healthy individuals while listening to individually-tailored pleasurable music - a highly rewarding stimulus known to engage the VS.

View Article and Find Full Text PDF

Amygdala electrical-finger-print (AmygEFP) NeuroFeedback guided by individually-tailored Trauma script for post-traumatic stress disorder: Proof-of-concept.

Neuroimage Clin

January 2022

Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. Electronic address:

Background: Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory.

View Article and Find Full Text PDF

Volitional limbic neuromodulation exerts a beneficial clinical effect on Fibromyalgia.

Neuroimage

February 2019

Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel-Aviv, Israel. Electronic address:

Volitional neural modulation using neurofeedback has been indicated as a potential treatment for chronic conditions that involve peripheral and central neural dysregulation. Here we utilized neurofeedback in patients suffering from Fibromyalgia - a chronic pain syndrome that involves sleep disturbance and emotion dysregulation. These ancillary symptoms, which have an amplificating effect on pain, are known to be mediated by heightened limbic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!