A time-course analysis was conducted of thermophilic anaerobic digestion of dairy manure and wheat distillery thin stillage. Sequencing of chaperonin targets provided a phylogenetic survey of both bacteria and archaea in the digestate, along with an appraisal of the diversity of the reactor microbiome. A total of 1129 bacterial operational taxonomic units (OTU) were detected in the reactors, with OTU related to Clostridium becoming numerically dominant by day 7, and Acetivibrio-related OTU by day 35. Archaeal communities were less diverse, with 19 OTU detected representing both acetoclastic and hydrogenotrophic methanogens. Regardless of input material, the same organisms came to dominate the reactors, reflecting strong selective pressures present in the digesters. Principal coordinate analysis of the microbial communities showed that the bacterial communities clustered based on factors other than input material. Bacterial and archaeal OTU were identified with significant correlations to performance parameters, suggesting important roles in the methane production pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.10.070 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.
Infertility poses a global challenge that impacts a significant proportion of the populace. Presently, there is a substantial emphasis on investigating the potential of probiotics and their derivatives, called postbiotics, as an alternative therapeutic strategy for addressing infertility. The term of "postbiotics" refers to compounds including peptides, enzymes, teichoic acids, and muropeptides derived from peptidoglycans, polysaccharides, proteins, and organic acids that are excreted by living bacteria or released after bacterial lysis.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
December 2023
Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
February 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering/Life Sciences/Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Zhuhai, 519082, China.
Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!