Gonadotropin-releasing hormone (GnRH) plays important roles in vertebrate reproduction. Recently, molecules structurally similar to vertebrate GnRH were discovered in mollusks, including a gastropod, Aplysia californica. As an important step toward understanding the function of A. californica GnRH (ap-GnRH), the present study examined the localization of ap-GnRH peptide and transcript in the central and peripheral tissues. Reverse transcription polymerase chain reaction (RT-PCR) revealed wide expression of ap-GnRH in all ganglia (abdominal, buccal, cerebral, and pedal ganglia) of the central nervous system (CNS) and in multiple peripheral organs. However, in situ hybridization (ISH) revealed that cells positive for ap-GnRH are detectable only in the CNS, with the pedal ganglia containing the highest number of ap-GnRH-positive neurons, followed by the cerebral and abdominal ganglia. Most neurons positive for the transcript were simultaneously positive for the peptide, although some discrepancies were observed in cerebral and abdominal ganglia. Overall, our data suggest the de novo synthesis of ap-GnRH is restricted to the CNS, with the pedal ganglia being the primary source of ap-GnRH. Our results support the notion that ap-GnRH is a bona-fide neuropeptide that may assume diverse central functions, including those unrelated to reproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2013.11.007 | DOI Listing |
The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.
View Article and Find Full Text PDFGait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.
View Article and Find Full Text PDFSci Rep
October 2024
Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
Acta Neuropathol Commun
August 2024
Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
Primary familial brain calcification (PFBC) is a genetic neurological disorder characterized by symmetric brain calcifications that manifest with variable neurological symptoms. This study aimed to explore the genetic basis of PFBC and elucidate the underlying pathophysiological mechanisms. Six patients from four pedigrees with brain calcification were enrolled.
View Article and Find Full Text PDFR Soc Open Sci
June 2024
The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, , Hong Kong.
While ocean acidification (OA) impacts the behaviour of marine organisms, the complexity of neurosystems makes linking behavioural impairments to environmental change difficult. Using a simple model, we exposed to ambient or elevated CO conditions (approx. 1500 µatm) and tested how OA affected the neuromolecular response of the pleural-pedal ganglia and caused tail withdrawal reflex (TWR) impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!