Oriented collagen nanocoatings for tissue engineering.

Colloids Surf B Biointerfaces

Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy.

Published: February 2014

Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.10.026DOI Listing

Publication Analysis

Top Keywords

collagen films
12
oriented collagen
8
collagen film
8
collagen
6
collagen nanocoatings
4
nanocoatings tissue
4
tissue engineering
4
engineering collagens
4
collagens proteins
4
proteins composing
4

Similar Publications

Opto-Laser-Responsive Smart NanoGel with Mild Hyperthermia, Vascularization, and Anti-Inflammatory Potential for Boosting Hard-to-Heal Wounds in a Diabetic Mice Model.

Mol Pharm

January 2025

An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.

It is well known that impaired wound healing associated with diabetes mellitus has led to a challenging problem as well as a global economic healthcare burden. Conventional wound care therapies like films, gauze, and bandages fail to cure diabetic wounds, thereby demanding a synergistic and promising wound care therapy. This investigation aimed to develop a novel, greener synthesis of a laser-responsive silver nanocolloid (LR-SNC) prepared using hyaluronic acid as a bioreductant.

View Article and Find Full Text PDF

The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.

View Article and Find Full Text PDF

Spiro-Ometad As A Promising Substrate In Biomedical Devices.

ChemistryOpen

January 2025

Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy.

Bioactive films composed of Spiro-OMeTAD, a conductive molecular material (CMM), in combination with collagen have been manufactured and characterised for the first time. In-vitro cellular testing demonstrated the non-cytotoxicity of the doped Spiro-OMeTAD /Collagen films, opening the way for implantable or wearable medical devices and biosensors based on molecular materials.

View Article and Find Full Text PDF

Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding.

Life (Basel)

November 2024

Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland.

Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).

View Article and Find Full Text PDF

Characterization and film-forming properties of collagen from three species of sea cucumber from the South China Sea: Emphasizing the effect of transglutaminase.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:

This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!