Effect of temperature and substitution on Cope rearrangement: a symmetry perspective.

J Phys Chem A

Department of Natural Sciences, The Open University of Israel , 1 University Rd., Raanana 43107, Israel.

Published: December 2013

Many reactions feature symmetry variation along the reaction path on the potential energy surface. The interconversion of the point group symmetry of the stationary points can be characteristic of these processes. Increasing the temperature, however, leads to the loss of symmetry in its traditional yes-no language. We find that in such cases the instantaneous distance of the molecular structure from its symmetric counterpart is a suitable collective variable that can describe the reaction process. We show that this quantity, the continuous symmetry measure (CSM), has a positive linear relationship with temperature, implying that even highly symmetric molecules should be considered as asymmetric above 0 K. Using ab initio molecular dynamics, we simulate the temperature-induced Cope rearrangements of several fluxional molecules and employ different CSMs to follow the reaction progress. We use this methodology to demonstrate the validity of important concepts governing these reactions: Woodward-Hoffmann rules and TS aromaticity. Statistical analysis of the CSM distributions reveals that ligands connected to the carbon frame have profound effect on the reaction course. In particular, our results show that lower temperatures tend to enhance the differences between the TS-stabilizing effect of the substituents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp411044mDOI Listing

Publication Analysis

Top Keywords

symmetry
5
temperature substitution
4
substitution cope
4
cope rearrangement
4
rearrangement symmetry
4
symmetry perspective
4
perspective reactions
4
reactions feature
4
feature symmetry
4
symmetry variation
4

Similar Publications

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

We propose a double-cavity optomechanical system with nonreciprocal coupling to realize tunable optical nonreciprocity that has the prospect of making an optical device for the manipulation of information processing and communication. Here we investigate the steady-state dynamic processes of the double-cavity system and the transmission of optical waves from opposite cavity directions. The transmission spectrum of the probe field is presented in detail and the physical mechanism of the induced transparency window is analyzed.

View Article and Find Full Text PDF

The First Kleinman-type Second-Harmonic Generation Circular Dichroism On/Off Switchable Ferroelectrics.

Angew Chem Int Ed Engl

January 2025

Nanchang University, College of Chemistry, No.999 Xuefu Road, Honggutan New District, 330031, Nanchang, CHINA.

Chiral ferroelectrics have recently received considerable interest due to their unique chiroptical properties. They can adopt Kleinman symmetry second-harmonic generation (SHG)-active chiral-polar point groups in the ferroelectric phase while Kleinman symmetry SHG-inactive chiral-nonpolar point groups in the paraelectric phase, providing a great opportunity to realize on/off switching of SHG circular dichroism (SHG-CD) response. However, the SHG-CD effect was rarely explored in chiral ferroelectrics, and the on/off switchable SHG-CD has never been reported.

View Article and Find Full Text PDF

Helical Quintulene: Synthesis, Chirality, and Supramolecular Assembly.

Angew Chem Int Ed Engl

January 2025

Xiamen University, Department of Chemistry, Siminnan Road 422, 361005, Xiamen, CHINA.

Quintulene is a quintuply symmetrical cycloarene with a positively curved molecular geometry. First described by Staab and Sauer in 1984, its successful synthesis was not achieved until 2020. Due to the challenges posed by its positive curvature, structural extensions of quintulene have been studied rarely.

View Article and Find Full Text PDF

Correlation between maxillary defect and facial asymmetry.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China. Electronic address:

The aim of this study was to evaluate the correlation between maxillary defects and facial asymmetry, and to establish categories for visual perception of facial asymmetry. The facial data of 47 patients who underwent maxillary resection due to tumors were captured using stereophotogrammetry. Facial asymmetry was measured using a landmark-independent method and assessed with a Likert scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!