Contamination of food and feed with pyrrolizidine alkaloids is currently discussed as a potential health risk. Here, we report the development of a new HPLC-ESI-MS/MS sum parameter method to quantitate the pyrrolizidine alkaloid content in complex food matrices. The procedure was validated for honey and culinary herbs. Isotopically labeled 7-O-9-O-dibutyroyl-[9,9-(2)H2]-retronecine was synthesized and utilized as an internal standard for validation and quantitation. The total pyrrolizidine alkaloid content of a sample is expressed as a single sum parameter: retronecine equivalents (RE). Ld/Lq for honey was 0.1 μg RE/kg/0.3 μg RE/kg. For culinary herbs, 1.0 μg RE/kg/3.0 μg RE/kg (dry weight, dw) and 0.1 μg RE/kg/0.3 μg RE/kg (fresh weight, fw) were determined, respectively. The new method was applied to analyze 21 herbal convenience products. Fifteen products (71%) were pyrrolizidine alkaloid positive showing pyrrolizidine alkaloid concentrations ranging from 0.9 to 74 μg RE/kg fw.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf403647uDOI Listing

Publication Analysis

Top Keywords

pyrrolizidine alkaloid
16
μg re/kg
16
sum parameter
12
pyrrolizidine alkaloids
8
hplc-esi-ms/ms sum
8
parameter method
8
alkaloid content
8
culinary herbs
8
μg re/kg/03
8
re/kg/03 μg
8

Similar Publications

Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.

View Article and Find Full Text PDF

Drug-induced hepatic sinusoidal obstruction syndrome: current advances and future perspectives.

Arch Toxicol

December 2024

Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Hepatic sinusoidal obstruction syndrome (HSOS) has gained recognition as a rare form of drug-induced liver injury (DILI) in recent years. Although extensively studied in the context of hematopoietic stem cell transplantation (HSCT), the applicability of this knowledge to drug-induced HSOS remains limited due to distinct etiological factors. The primary causes of drug-induced HSOS include the ingestion of pyrrolizidine alkaloid (PA)-containing plants, as well as the use of chemotherapeutic agents and immunosuppressive drugs.

View Article and Find Full Text PDF

Pyrrolizidine alkaloids N-oxides (PA-N-oxides) are predominant in plants and herbal foods, and are converted to pyrrolizidine alkaloids (PAs) upon consumption, leading to toxicity. The effect of interindividual kinetic differences on the relative potency values of PA-N-oxides compared to their PAs (REP) was studied, with riddelliine N-oxide (RIDO) and riddelliine (RID) as model compounds. In vitro kinetic data measured in incubations with 30 fecal and 25 liver S9 donor samples showed high variation across individuals, where the interindividual variability was captured with Bayesian multilevel regression.

View Article and Find Full Text PDF

Minocycline prevents monocrotaline-induced pulmonary hypertension through the attenuation of endothelial dysfunction and vascular wall thickening.

J Pharmacol Sci

January 2025

Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan. Electronic address:

Pulmonary hypertension (PH) is a progressive disease with a poor prognosis in which high pulmonary artery pressure leads to right heart failure, therefore, there is an urgent need to elucidate pathological mechanisms and to develop new treatment for PH. Minocycline has not only antibacterial effects but also anti-inflammatory effects in various tissues. We hypothesize that minocycline could prevent PH development in rats.

View Article and Find Full Text PDF

Background: D-limonene (D-L) is the major monocyclic monoterpene in citrus plants with anti-inflammatory properties. Pulmonary hypertension (PH) can cause right heart dysfunction and increases the risk of death, partially due to inflammatory response in the heart.

Objective: To evaluate the possible protective effect of D-L on cardiac function in a rat model of monocrotaline-induced PH (MCT-PH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!