Metal oxide affinity chromatography (MOAC) represented by titanium dioxide (TiO2) chromatography has been used for phosphopeptide enrichment from cell lysate digests prior to mass spectrometry. For in-depth phosphoproteomic analysis, it is important for MOAC to achieve high phosphopeptide enrichment efficiency by optimizing purification conditions. However, there are some differences in phosphopeptide selectivity and specificity enriched by various TiO2 materials and procedures. Here, we report that binding/wash buffers containing polyhydric alcohols, such as glycerol, markedly improve phosphopeptide selectivity from complex peptide mixtures. In addition, the elution conditions combined with secondary amines, such as bis-Tris propane, made it possible to recover phosphopeptides with highly hydrophobic properties and/or longer peptide lengths. To assess the practical applicability of our improved method, we confirmed using PC3 prostate cancer cells. By combining the hydrophilic interaction chromatography (HILIC) with the optimized TiO2 enrichment method prior to LC-MS/MS analysis, over 8300 phosphorylation sites and 2600 phosphoproteins were identified. Additionally, some dephosphorylations of those were identified by treatment with dasatinib for a kinase inhibitor. These results indicate that our method is applicable to understanding the profiling of kinase inhibitors such as anticancer compounds, which will be useful for drug discovery and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr400546u | DOI Listing |
Methods Mol Biol
December 2024
Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Protein phosphorylation is an important post-translational modification that regulates almost all cellular processes, such as cellular metabolism, growth, differentiation, signal transduction, and gene regulation. Mass spectrometry, which acts as an automated and sensitive method, enables global analysis of protein phosphorylation. However, several technical challenges need to be addressed when analyzing protein phosphorylation in a global manner.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry, 316 Physical Science, Oklahoma State University, Stillwater, OK 74078, USA.
One method for the colorimetric detection of hydrogen peroxide vapor is based on a titanium-hydrogen peroxide complex. A color changing material based on a titania hydroxypropyl cellulose thin film was initially developed. However, as this material dries, the sensitivity of the material is significantly reduced.
View Article and Find Full Text PDFMolecules
December 2024
Chemistry Department, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates.
The presence of drugs in wastewater effluent is of concern due to their effects on the aquatic fauna and flora and there are growing efforts for their removal from the environment. In this paper, we study the photocatalytic visible-light degradation of naproxen, an over-the-counter anti-inflammatory drug, using 5% copper-doped TiO. The photocatalyst was characterized by XRD and BET surface area measurements.
View Article and Find Full Text PDFChempluschem
December 2024
Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S. C. (CIDETEQ)., Parque Tecnológico Querétaro s/n, San Fandila, 76730, Pedro Escobedo, Querétaro, México.
A large amount of atmospheric emissions result from various anthropogenic activities worldwide. Given the complexity of volatile organic compounds (VOCs) and their different adsorption capacities, redox potentials, and photolytic properties, an air purification system for the removal of VOCs that combines multiple physical processes was proposed in this study using toluene as an example. These processes include, in the first step, an adsorption treatment (AT) with activated carbon (AC), where toluene adsorption results from the insertion of aromatic rings (nonpolar groups) between the graphitic carbon planes, as demonstrated by the Raman spectroscopy; in the second step, electrochemical treatment (ECT) using TiO|Ti||SS-304 electrodes applying an electric field to accelerate the oxidation of toluene through the production of free radicals (⋅OH), hydroperoxyl radicals and benzyl groups, followed by the rupture of aromatic rings to generate aliphatic compounds and the consequent mineralization to CO, CO, and HO; in the third step, photolytic treatment (PT) with a 254-nm UV lamp for toluene degradation is used, which is influenced by the addition of radicals, such as ⋅OH or ⋅O , to transform toluene into either benzene or phenol.
View Article and Find Full Text PDFACS Omega
November 2024
Departamento de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia.
A binary dimensionally stable anode Ti/TiO-RuO electrode was used to abate the antibiotic oxytetracycline (OTC) (CHNO) in chloride water. The anode was prepared using the Pechini method and subsequently characterized by X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and cyclic voltammetry (CV). The optimum values of the operational parameters affecting removal efficiency were determined using a 2 × 3 factorial design by screening (6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!