The effects of C60(C(COOH)2)2-FITC on proliferation and differentiation of human mesenchymal stem cells in vitro.

J Nanosci Nanotechnol

CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Yuquan Road, 19B, Beijing 100049, China.

Published: October 2013

As manufactured nanoparticles, fullerene nanoparticles were used as the model to research the manufactured nanoparticles entering into cells and hence have been rapidly developed for biomedical uses. Human mesenchymal stem cells (hMSCs) have become the most widely used seeding cells in tissue engineering because they are readily obtained without ethical problems and are multipotent with regard to adipogenic, chondrogenic, and osteogenic lineages. Because of their favorable biological and cellular activities, C60 carboxyl derivatives are among the most widely studied C60 derivatives. FITC labeled C60(C(COOH)2)2 nanoparticles were charactered by FTIR, ESI-MS, XPS and DLS. The effects of C60(C(COOH)2)2-FITC on proliferation and differentiation of human mesenchymal stem cells (hMSCs) in vitro were observed. The fullerene nanoparticles are quickly internalized by the cells and they had low toxicity to proliferation of hMSCs. The C60(C(COOH)2)2 nanoparticles could promote cell proliferation, enhance osteoclast differentiation of hMSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.7166DOI Listing

Publication Analysis

Top Keywords

human mesenchymal
12
mesenchymal stem
12
stem cells
12
effects c60ccooh22-fitc
8
c60ccooh22-fitc proliferation
8
proliferation differentiation
8
differentiation human
8
manufactured nanoparticles
8
fullerene nanoparticles
8
cells hmscs
8

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Single-nucleus and spatial landscape of the sub-ventricular zone in human glioblastoma.

Cell Rep

January 2025

The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:

The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.

Background: Small vessel disease (SVD) is a disorder of the brain's microvessels and a common cause of dementia and stroke. Evidence links normal ageing features to SVD progression, involving endothelial activation, pericyte dysfunction, BBB failure, and microglia response. Here, we aim to examine this relationship through a series of translational investigations.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Ischemic stroke (IS) is a risk factor for developing Alzheimer's disease (AD). In this context, microglial activation is a shared cellular response to these two conditions that can be either beneficial or detrimental. Previous research has established that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) treatment leads to enhanced functional recovery and reduced brain infarct volume in animal IS models.

View Article and Find Full Text PDF

Background: Accumulation of oxidative DNA damage and its inefficient repair is a contributing factor to Alzheimer's disease (AD), yet the underlying mechanism remains largely unknown. Novel AD mouse models deficient for oxidative DNA damage repair were developed and characterized to better understand their impact on AD progression. In addition, vascularized cerebral organoids from AD patients were generated to translate findings to a human model of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!