De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein) using transcriptome sequences.

PLoS One

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China.

Published: August 2014

Background: As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels.

Methodology/principal Findings: We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future.

Conclusions/significance: We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828239PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080046PLOS

Publication Analysis

Top Keywords

stored-product pest
8
liposcelis entomophila
8
molecular mechanisms
8
mechanisms underlying
8
resistance environmental
8
environmental stress
8
insecticide resistance
8
genes putative
8
genes
7
entomophila
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!