UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828377 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079593 | PLOS |
Int J Biol Macromol
January 2025
Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India. Electronic address:
The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, China.
-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from -methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from () was heterologously expressed in BL21(DE3) and the enzymatic properties of the expressed protein were analyzed.
View Article and Find Full Text PDFThe pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!