Modeling disease severity in multiple sclerosis using electronic health records.

PLoS One

Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America ; Harvard Medical School, Boston, Massachusetts, United States of America ; Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America.

Published: August 2014

Objective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings.

Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume).

Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R(2) = 0.38±0.05, and that between EHR-derived and true BPF has a mean R(2) = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10(-12)).

Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823928PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078927PLOS

Publication Analysis

Top Keywords

disease severity
12
multiple sclerosis
12
ehr data
12
electronic health
8
health records
8
identify patients
8
routinely collected
8
collected ehr
8
complex neurological
8
codified narrative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!