Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH (-/-)) or activating Fc receptors (FcRγ(-/-)) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828184PMC
http://dx.doi.org/10.1371/journal.ppat.1003771DOI Listing

Publication Analysis

Top Keywords

helminth larvae
12
antibodies
8
tissue migrating
8
migrating helminth
8
larvae prevent
8
prevent tissue
8
tissue damage
8
macrophages larvae
8
larvae
7
tissue
6

Similar Publications

BACKGROUND Ancylostoma caninum is a soil-borne, soil-transmitted helminth with infective larvae and produces cutaneous larva migrans in humans. The objective of this study was to confirm the presence of A. caninum in domestic dogs from the urban-marginal and rural sectors of the Ecuadorian coast through morphometry, culture, and molecular techniques.

View Article and Find Full Text PDF

Background: is a known cause of a zoonotic infectious illness called toxocariasis. Parathenic hosts are important as they can transmit larvae 2 (L) through direct transmission. Scanning electron microscope (SEM) techniques are needed to provide a three-dimensional image of each stage of larvae.

View Article and Find Full Text PDF

Molecular Characterization of in Mazandaran Province, North of Iran.

Arch Razi Inst

June 2024

Department of Parasitology, Ayatollah Rouhani Hospital, Babol Medical Sciences University, Mazandaran, Iran.

is a parasitic nematode that lives in the mucosa of the small intestine and causes strongyloidiasis in humans. Mazandaran is among the endemic areas of this parasite in Iran. For detecting larvae in stool samples, various techniques, such as PCR technique have been used.

View Article and Find Full Text PDF

The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!