In recent years, human activity directly and indirectly influenced the demography of moose in Poland. The species was close to extinction, and only a few isolated populations survived after the Second World War; then, unprecedented demographic and spatial expansions had occurred, possibly generating a very complex pattern of population genetic structure at the present-day margins of the species range in Poland. Over 370 moose from seven populations were collected from Poland, and partial sequences of the mitochondrial control region (mtDNA-cr; 607 bp) were obtained. In addition, the entire mtDNA cytochrome gene (1,140 bp) and Y-chromosome markers (1,982 bp in total) were studied in a chosen set of individuals. Twelve mtDNA haplotypes that all belonged to the European moose phylogroup were recorded. They could be divided into two distinct clades: Central Europe and the Ural Mountains. The first clade consists of three distinct groups/branches: Biebrza, Polesie, and Fennoscandia. The Biebrza group has experienced spatial and demographic expansion in the recent past. Average genetic differentiation among moose populations in Poland at mtDNA-cr was great and significant ( = 0.407,  < 0.001). Using mtDNA-cr data, four separate groups of population were recognized using spatial analysis of molecular variance and principal coordinate analysis, including a relict population in Biebrza National Park, a reintroduced Kampinos National Park population, as well as populations that were descendants of moose that colonized Poland from the east (Lithuania, Belarus, and Ukraine) and the north (former East Prussia). Among all the sequenced Y-chromosome markers, polymorphisms were found in the marker in three populations only; four haplotypes were recorded in total. No significant differentiation was detected for this Y-linked marker among moose populations in Poland. Our mtDNA study revealed that a variety of different factors-bottleneck, the presence of relict, autochthonous populations, translocations, limited female dispersal, and the colonization from the east and north-are responsible for the observed complex pattern of population genetic structure after demographic and spatial expansion of moose in Poland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786092PMC
http://dx.doi.org/10.1007/s13364-013-0148-7DOI Listing

Publication Analysis

Top Keywords

population genetic
8
genetic structure
8
moose populations
8
moose
5
poland
5
complex patterns
4
patterns population
4
structure moose
4
moose spatial
4
spatial expansion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!