One of the major reasons for the wide epidemicity of tuberculosis and for the necessity for extensive chemotherapeutic regimens is that the causative agent, Mycobacterium tuberculosis, has an ability to become dormant. Therefore, new lead compounds that are anti-bacterial against M. tuberculosis in both active and dormant states are urgently needed. Marine sponge diterpene alkaloids, agelasines B, C, and D, from an Indonesian marine sponge of the genus Agelas were rediscovered as anti-dormant-mycobacterial substances. Based on the concept that the transformants over-expressing targets of antimicrobial substances confer drug resistance, strains resistant to agelasine D were screened from Mycobacterium smegmatis transformed with a genomic DNA library of Mycobacterium bovis BCG. Sequence analysis of the cosmids isolated from resistant transformants revealed that the responsible gene was located in the genome region between 3475.051 and 3502.901 kb. Further analysis of the transformants over-expressing the individual gene contained in this region indicated that BCG3185c (possibly a dioxygenase) might be a target of the molecule. Moreover, agelasine D was found to bind directly to recombinant BCG3185c protein (KD 2.42 μm), based on surface plasmon resonance (SPR). This evidence strongly suggests that the BCG3185c protein is the major target of agelasine D, and that the latter is the anti-mycobacterial substance against dormant bacilli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201300470 | DOI Listing |
Braz J Microbiol
January 2025
Graduate Program in Evolution and Diversity, Federal University of ABC, Av. dos Estados, Bairro Bangu, Santo André, São Paulo, 5001, CEP 09210-580, Brazil.
Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.
View Article and Find Full Text PDFChem Biodivers
January 2025
SRM Institute of Science and Technology: SRM Institute of Science and Technology (Deemed to be University), Department of Chemical Engineering, Kattankulathur, 603203, Chengalpattu, INDIA.
The rising threat of antimicrobial resistance among pathogens highlights the critical need for novel antimicrobial agents. This study explores the potential of natural products by investigating hexane extracts from the marine sponge Haliclona fibulata (HF) for their antibacterial efficacy. The well diffusion method of HF extract showed significant antibacterial activity against P.
View Article and Find Full Text PDFBiomed Rep
February 2025
Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan.
Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
Department of Biotechnology, RV College of Engineering, Bengaluru, India.
The Nipah virus (NiV) is an emerging pathogenic paramyxovirus that causes severe viral infection with a high mortality rate. This study aimed to model the effectual binding of marine sponge-derived natural compounds (MSdNCs) towards RNA-directed RNA polymerase (RdRp) of NiV. Based on the functional relevance, RdRp of NiV was selected as the prospective molecular target and 3D-structure, not available in its native form, was modelled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!