Epidermal growth factor receptor (EGFR) plays an important role in essential cellular processes such as proliferation, survival and migration. Aberrant activation of EGFR is frequently found in human cancers of various origins and has been implicated in cancer pathogenesis. The therapeutic antibody cetuximab (Erbitux) inhibits tumor growth by binding to the extracellular domain of EGFR, thereby preventing ligand binding and receptor activation. This activity is shared by the single chain antibody fragment scFv(225) that contains the same antigen binding domain. The unrelated EGFR-specific antibody fragment scFv(30) binds to the intracellular domain of the receptor and retains antigen binding upon expression as an intrabody in the reducing environment of the cytosol. Here, we used scFv(225) and scFv(30) domains to generate a novel type of bispecific transmembrane antibody termed 225.TM.30, that simultaneously targets intra- and extracellular EGFR epitopes. Bispecific 225.TM.30 and related membrane-anchored monospecific 225.TM and TM.30 proteins carrying extracellular scFv(225) or intracellular scFv(30) antibody fragments linked to a transmembrane domain were expressed in EGFR-overexpressing tumor cells using a doxycycline-inducible retroviral system. Induced expression of 225.TM.30 and 225.TM, but not TM.30 reduced EGFR surface levels and ligand-induced EGFR activation, while all three molecules markedly inhibited tumor cell growth. Co-localization of 225.TM with EGFR was predominantly found on the cell surface, while interaction with 225.TM.30 and TM.30 proteins resulted in the redistribution of EGFR to perinuclear compartments. Our data demonstrate functionality of this novel type of membrane-anchored intrabodies in tumor cells and suggest distinct modes of action of mono- and bispecific variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.28585 | DOI Listing |
Oncologist
January 2025
Department of Medical Oncology, Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada.
Background: Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC.
Patients And Methods: Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible.
Front Oncol
September 2024
Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, United States.
Int J Mol Med
November 2024
Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan.
The 24 claudin () genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China. Electronic address:
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually.
View Article and Find Full Text PDFCancers (Basel)
September 2024
Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
There is an unmet need to develop new treatments for metastatic prostate cancer. With the development of targeted radioligand therapies, bispecific T cell engagers, antibody-drug conjugates and chimeric antigen receptor T cell (CAR T) therapies, tumor-associated cell surface antigens have emerged as new therapeutic targets in metastatic prostate cancer. Ongoing and completed clinical trials targeting prostate-specific membrane antigen (PSMA), six transmembrane epithelial antigens of the prostate 1 (STEAP1), kallikrein-related peptidase 2 (KLK2), prostate stem cell antigen (PSCA), and delta-like protein 3 (DLL3) in metastatic prostate cancer were reviewed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!