Glucose transporters 1 (GLUT1) and 3 (GLUT3) belong to the solute carrier family 2 (SLC2, facilitated glucose transporter) and are the two most important glucose transporters (GLUTs) in brain tissue, and between them, GLUT3 is the primary one for neurons, which is responsible for glucose uptake. To obtain insights into the possible alterations of GLUT1 and GLUT3 in transmissible spongiform encephalopathies (TSEs), the protein levels of GLUT1 and GLUT3 in the brain tissues of agents 263K- and 139A-infected hamsters, as well as agents 139A- and ME7-infected mice, were evaluated. Western blots, immunofluorescent assay (IFA), and immunohistochemical (IHC) assays revealed that at the terminal stages of the infection, GLUT3 level in the brain tissues of scrapie-infected rodents was significantly downregulated, while GLUT1 level remained almost unchanged. The decline of GLUT3 level was closely related with prolonged incubation time. In line with these results in vivo, the GLUT3 level in a prion persistently infected cell line SMB-S15 was also lower than that of its normal cell line SMB-PS. Moreover, the level of hypoxia-inducible factor-1 alpha (HIF-1α), which positively regulated the expressions of GLUTs, was also markedly downregulated in the brains of several scrapie-infected animals. In vitro glucose uptake assays illustrated a markedly decreased 2-[N-(7-nitrobenze-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose uptake activity in SMB-S15 cells. Our data indicate that the reduction of GLUT3 is a common phenomenon in prion diseases, which occurs much earlier than the appearance of clinical symptoms. Defect in glucose uptake and metabolism of neurons, like in other neurodegenerative diseases, for example, Alzheimer's disease (AD), may be one of the essential processes in the pathogenesis of prion diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-013-8574-8DOI Listing

Publication Analysis

Top Keywords

glut3 level
16
brain tissues
12
glut1 glut3
12
glucose uptake
12
reduction glut3
8
glut1 level
8
glucose transporters
8
glut3
8
prion diseases
8
level
7

Similar Publications

Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.

View Article and Find Full Text PDF

Although chemoresistance constitutes a significant barrier to the effectiveness of chemotherapy in colorectal cancer (CRC), its precise mechanisms remain unclear. YAP functions as an oncogene in various malignancies. However, the relationship between YAP and chemoresistance in CRC needs clarification.

View Article and Find Full Text PDF
Article Synopsis
  • - Maternal dietary supplementation with chitosan oligosaccharide (COS) during late gestation and lactation significantly reduced stillbirths and mummies in piglets, indicating improved productivity for sows.
  • - Analysis showed that COS supplementation enhanced the expression of key mRNAs in the placenta of IUGR piglets, pointing to better placental function and reduced oxidative stress.
  • - Additionally, the intestinal health of IUGR piglets from COS sows improved, evidenced by increased mRNA and protein levels in the jejunum, suggesting better immune status and overall growth potential.
View Article and Find Full Text PDF

Subacute rumen acidosis (SARA) is a significant concern in dairy cattle fed grain-rich diets. To elucidate the underlying pathophysiological mechanisms, ruminal papilla biopsies are often used. This study aimed to assess how the sampling site along the ruminal papilla influences gene expression profiles in rumen epithelium during SARA.

View Article and Find Full Text PDF

Objective: To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines.

Methods: In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!