Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase.

J Mol Biol

Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:

Published: February 2014

DNA replication in all organisms requires polymerases to synthesize copies of the genome. DNA polymerases are unable to function on a bare template and require a primer. Primases are crucial RNA polymerases that perform the initial de novo synthesis, generating the first 8-10 nucleotides of the primer. Although structures of archaeal and bacterial primases have provided insights into general priming mechanisms, these proteins are not well conserved with heterodimeric (p48/p58) primases in eukaryotes. Here, we present X-ray crystal structures of the catalytic engine of a eukaryotic primase, which is contained in the p48 subunit. The structures of p48 reveal that eukaryotic primases maintain the conserved catalytic prim fold domain, but with a unique subdomain not found in the archaeal and bacterial primases. Calorimetry experiments reveal that Mn(2+) but not Mg(2+) significantly enhances the binding of nucleotide to primase, which correlates with higher catalytic efficiency in vitro. The structure of p48 with bound UTP and Mn(2+) provides insights into the mechanism of nucleotide synthesis by primase. Substitution of conserved residues involved in either metal or nucleotide binding alter nucleotide binding affinities, and yeast strains containing the corresponding Pri1p substitutions are not viable. Our results reveal that two residues (S160 and H166) in direct contact with the nucleotide were previously unrecognized as critical to the human primase active site. Comparing p48 structures to those of similar polymerases in different states of action suggests changes that would be required to attain a catalytically competent conformation capable of initiating dinucleotide synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3946992PMC
http://dx.doi.org/10.1016/j.jmb.2013.11.007DOI Listing

Publication Analysis

Top Keywords

structures p48
8
p48 subunit
8
archaeal bacterial
8
bacterial primases
8
nucleotide binding
8
structures
5
p48
5
primase
5
primases
5
nucleotide
5

Similar Publications

Background: Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity.

View Article and Find Full Text PDF

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) () is highly conserved in baculoviruses. Previous studies have shown that is required for the production of infectious budded virions (BVs). However, the functional role of in virion morphogenesis remains unknown.

View Article and Find Full Text PDF

The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases.

Cell Biol Int

August 2024

ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China.

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus.

View Article and Find Full Text PDF

Purpose: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied.

Materials And Methods: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing.

Results: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted- < .

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in Kras transgenic mouse models of PDAC, the exact mechanisms of how oncogenic Kras regulates this process remain an enigma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!