Resveratrol is a naturally occurring polyphenolic phytoalexin with chemopreventive properties. We previously reported a synergistic anti-proliferative effect of resveratrol and clofarabine against malignant mesothelioma (MM) cells. Here, we further investigated molecular mechanisms involved in the synergistic interaction of these compounds in MM MSTO-211H cells. Resveratrol, in combination with clofarabine, time-dependently induced a strong cytotoxic effect with the nuclear accumulation of phospho-p53 (p-p53) in MSTO-211H cells, but not in normal mesothelial MeT-5A cells. Combination treatment up-regulated the levels of p-p53, cleaved caspase-3, and cleaved PARP proteins. Gene silencing with p53-targeting siRNA attenuated the sensitivity of cells to the combined treatment of two compounds. Analyses of p53 DNA binding assay, p53 reporter gene assay, and RTP-CR toward p53-regulated genes, including Bax, PUMA, Noxa and p21, demonstrated that induced p-p53 is transcriptionally active. These results were further confirmed by the siRNA-mediated knockdown of p53 gene. Combination treatment significantly caused the accumulation of cells at G1 phase with the increases in the sub-G0/G1 peak, DNA ladder, nuclear fragmentation, and caspase-3/7 activity. Taken together, these results demonstrate that resveratrol and clofarabine synergistically elicit apoptotic signal via a p53-dependent pathway, and provide a scientific rationale for clinical evaluation of resveratrol as a promising chemopotentiator in MM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2013.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!