Antimicrobial peptides (AMPs) play a crucial role in innate immunity. We have previously reported the isolation and characterization of the AMPs, strongylocins 1 and 2, and centrocin 1, from coelomocyte extracts of Strongylocentrotus droebachiensis. Here we show that these AMPs were expressed in phagocytes. In addition, transcripts of strongylocin 1 were detected in vibratile cells and/or colorless spherule cells, while transcripts of strongylocin 2 were found in red spherule cells. Results from immunoblotting and immunocytochemistry studies showed that centrocin 1 was produced by phagocytes and stored in granular vesicles. Co-localization of centrocin 1 and phagocytosed bacteria suggests that the granular vesicles containing centrocin 1 may be involved in the formation of phagolysosomes. We also analyzed the temporal and spatial expression of AMPs throughout larval development. Strongylocins were expressed in the early pluteus stage, while centrocin 1 was expressed in the mid pluteus stage. The spatial expression pattern showed that centrocin 1 was mainly located in blastocoelar cells (BCs) around the stomach and the esophagus. In addition, a few patrolling BCs were detected in some larval arms. Together, these results suggest that AMPs are expressed in different types of coelomocytes and that centrocin 1 is involved in response against bacteria. Furthermore, the expression of AMPs in larval pluteus stage, especially in BCs, indicates that AMPs and BCs are engaged in the larval immune system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dci.2013.10.013 | DOI Listing |
AbstractThe form of the cyphonautes larva of bryozoans changes little during development. The ciliated band that generates the feeding current increases nearly in proportion to body length, so that the maximum rate of clearing planktonic food from a volume of water becomes increasingly low relative to body protein. This development is unlike the other larvae that produce a feeding current with bands of simple cilia.
View Article and Find Full Text PDFChemosphere
July 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability.
View Article and Find Full Text PDFFront Neurosci
April 2024
Koltsov Institute of Developmental Biology, Russian Academy Sciences, Moscow, Russia.
Introduction: The plasticity of the nervous system plays a crucial role in shaping adaptive neural circuits and corresponding animal behaviors. Understanding the mechanisms underlying neural plasticity during development and its implications for animal adaptation constitutes an intriguing area of research. Sea urchin larvae offer a fascinating subject for investigation due to their remarkable evolutionary and ecological diversity, as well as their diverse developmental forms and behavioral patterns.
View Article and Find Full Text PDFFront Neurosci
April 2024
Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut.
View Article and Find Full Text PDFMar Pollut Bull
February 2024
Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil. Electronic address:
Plastic leachates have chemical and biological implications for marine environments. This study experimentally evaluated acute effects of weathering plastic leachates (0, 25, 50, 75 and 100 %) on fertilization and early development of the sea urchin Lytechinus variegatus. Fertilization, embryonic and larval development were drastically inhibited (~75 %) when gametes were exposed to intermediate and high leachate concentrations or delayed when exposed to the lowest concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!