Cold acclimation of NaCl secretion in a eurythermic teleost: mitochondrial function and gill remodeling.

Comp Biochem Physiol A Mol Integr Physiol

Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada. Electronic address:

Published: February 2014

Active chloride secretion, measured as short-circuit current (Isc) in ionocytes of opercular epithelia (OE) in the eurythermic, euryoxic, and euryhaline killifish or mummichog (Fundulus heteroclitus) was studied in cold (5°C) and warm (20°C) acclimated fish to determine if homeoviscous adaptation aided chloride secretion in the cold. Isolated opercular epithelia were cooled from 30°C to 0.2°C for warm and cold acclimated fish; from 30 to 8°C, Isc decreased with Q10=1.68 for warm and Q10=1.56 for cold acclimated tissues. By Arrhenius plots, there is a critical temperature, 8°C, below which aerobic Isc decreased sharply (Q10=6.90 for warm and 4.23 for cold acclimated tissues), suggesting a shift in mitochondrial efficiency of oxidative phosphorylation. In anaerobic conditions (0.5mM NaCN; N2 saturation), chloride transport continued at a lower rate, and Isc decrease with cooling below 8°C was less pronounced (Q10=2.95 for warm and 3.08 for cold), suggesting a shift in transporter function in plasma membrane. Under anaerobic conditions, NaCl secretion at 20°C was reversibly inhibited by hypotonic shock, indicating normal regulation of transport. Chloride secretion in warm-acclimated fish was supported mostly (75% at 20°C) by aerobic metabolism, whereas that for cold-acclimated fish was lower (55% at 20°C), suggesting a greater reliance on anaerobic metabolism in the cold. Once acclimated to cold, ionocytes may be temporarily incapable of increasing their aerobic ATP supply, even when warmed to 30°C. In cold acclimated fish there was increased polyunsaturated fatty acid composition of gill epithelium (consistent with homeoviscous adaptation) and gill remodeling, wherein epithelial cells filled the interlamellar space (interlamellar cell mass, ILCM) by as much as 70%, thus increasing diffusion distance against passive ion gain. Most ionocytes in these thickened epithelial masses became taller, still connecting basal lamina with the environment, consistent with the continuing transport rates at low temperatures. Whereas the low aerobic scope of cold-acclimated fish and thickened gill epithelium is appropriate to winter inactivity, metabolic depression and anaerobiosis, the large aerobic scope of warm-acclimated fish favors active foraging at high temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2013.11.004DOI Listing

Publication Analysis

Top Keywords

cold acclimated
20
chloride secretion
12
acclimated fish
12
cold
10
nacl secretion
8
gill remodeling
8
opercular epithelia
8
homeoviscous adaptation
8
isc decreased
8
acclimated tissues
8

Similar Publications

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.

Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars.

Commun Biol

January 2025

National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.

Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China.

View Article and Find Full Text PDF

Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant's origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!