Speciation involves the reproductive isolation of natural populations due to the sterility or lethality of their hybrids. However, the molecular basis of hybrid lethality and the evolutionary driving forces that provoke it remain largely elusive. The hybrid male rescue (Hmr) and the lethal hybrid rescue (Lhr) genes serve as a model to study speciation in Drosophilids because their interaction causes lethality in male hybrid offspring. Here, we show that HMR and LHR form a centromeric complex necessary for proper chromosome segregation. We find that the Hmr expression level is substantially higher in Drosophila melanogaster, whereas Lhr expression levels are increased in Drosophila simulans. The resulting elevated amount of HMR/LHR complex in hybrids results in an extensive mislocalization of the complex, an interference with the regulation of transposable elements, and an impairment of cell proliferation. Our findings provide evidence for a major role of centromere divergence in the generation of biodiversity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2013.10.001DOI Listing

Publication Analysis

Top Keywords

reproductive isolation
8
pair centromeric
4
centromeric proteins
4
proteins mediates
4
mediates reproductive
4
isolation drosophila
4
drosophila species
4
species speciation
4
speciation involves
4
involves reproductive
4

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.

View Article and Find Full Text PDF

Background: Antimicrobial resistance remains a worldwide health problem with serious societal and economical repercussions. Multidrug resistant and Extended-Spectrum β-Lactamase producing-Enterobacterales (ESBL-E) are pathogens of critical public health priority that urgently require the research and development of new drugs. This study aims to determine the prevalence and characterize the genes conferring resistance to β-lactams among Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections (UTIs) in the West region, Cameroon.

View Article and Find Full Text PDF

Phylogenetic analysis and molecular structure of NS1 proteins of porcine parvovirus 5 isolates from Mexico.

Arch Virol

January 2025

Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México.

Porcine parvovirus 5 (PPV5) is an unclassified member of the family Parvoviridae with no reported pathogenicity, although it is associated with multisystemic, reproductive, and respiratory diseases. Its open reading frame 1 (ORF1) encodes non-structural protein 1 (NS1), which is predicted to have helicase activity that is essential for viral replication. This protein contains a C-motif with an invariant asparagine residue that forms the core of the enzyme's active site, in conjunction with the Walker A and B motifs.

View Article and Find Full Text PDF

Toxoplasma gondii, an intracellular protozoan, is the causative agent of toxoplasmosis, an important public health and reproductive disease. T. gondii could cause significant damage in breeding kennels due to abortion and other reproductive disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!