A fundamental limitation in devising new therapeutic strategies for killing cancer cells with DNA damaging agents is the need to identify synthetic lethal interactions between tumor-specific mutations and components of the DNA damage response (DDR) in vivo. The stress-activated p38 mitogen-activated protein kinase (MAPK)/MAPKAP kinase-2 (MK2) pathway is a critical component of the DDR network in p53-deficient tumor cells in vitro. To explore the relevance of this pathway for cancer therapy in vivo, we developed a specific gene targeting strategy in which Cre-mediated recombination simultaneously creates isogenic MK2-proficient and MK2-deficient tumors within a single animal. This allows direct identification of MK2 synthetic lethality with mutations that promote tumor development or control response to genotoxic treatment. In an autochthonous model of non-small-cell lung cancer (NSCLC), we demonstrate that MK2 is responsible for resistance of p53-deficient tumors to cisplatin, indicating synthetic lethality between p53 and MK2 can successfully be exploited for enhanced sensitization of tumors to DNA-damaging chemotherapeutics in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962842PMC
http://dx.doi.org/10.1016/j.celrep.2013.10.025DOI Listing

Publication Analysis

Top Keywords

synthetic lethal
8
lethal interactions
8
dna damage
8
damage response
8
synthetic lethality
8
mk2
5
reversible gene-targeting
4
gene-targeting strategy
4
strategy identifies
4
synthetic
4

Similar Publications

Discovery of 2(1)-Quinoxalinone Derivatives as Potent and Selective MAT2A Inhibitors for the Treatment of MTAP-Deficient Cancers.

J Med Chem

January 2025

Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

Methionine adenosyltransferase 2A (MAT2A) has emerged as a synthetic lethal drug target in cancers bearing homozygous methylthioadenosine phosphorylase (MTAP) gene deletion. Despite the remarkable progress in the discovery and development of MAT2A inhibitors, current understanding about the selectivity of these compounds toward MTAP-deficient cancers is relatively limited. To improve the selectivity of MAT2A inhibitors for MTAP-deficient cancers remains a significant challenge.

View Article and Find Full Text PDF

Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks.

View Article and Find Full Text PDF

The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.

View Article and Find Full Text PDF

TNG908 is a brain-penetrant, MTA-cooperative PRMT5 inhibitor developed for the treatment of MTAP-deleted cancers.

Transl Oncol

January 2025

Tango Therapeutics, Tango Therapeutics, 201 Brookline Avenue, Boston, 02215, MA, United States.

TNG908 is a clinical stage PRMT5 inhibitor with an MTA-cooperative binding mechanism designed to leverage the synthetic lethal interaction between PRMT5 inhibition and MTAP deletion. MTAP deletion occurs in 10-15 % of all human cancer representing multiple histologies. MTA is a negative regulator of PRMT5 that accumulates as a result of MTAP deletion.

View Article and Find Full Text PDF

A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

January 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!