Rats with brain dysplasia evoked by interruption of different stages of prenatal neurogenesis show characteristic variations in susceptibility to seizures depending on the neurochemical specificity of pharmacological agents used to evoke seizures. To verify a discrepancy between the data obtained using different pharmacological models, neurochemically neutral electroshocks were applied here. To produce brain dysplasia of different degrees, pregnant Wistar rats were exposed to a single 1.0Gy dose of gamma rays on gestation days 13, 15, 17 or 19. From the postnatal day 60, their male offspring (E13s, E15s, E17s and E19s, respectively) were subjected to 21 daily electrical stimulations to evoke seizures. Profiles of tonic and clonic reactivity to electrical stimulation significantly differed from those observed following pilocarpine or kainic acid administration. E17s showed minimal intensity of tonic but maximal of clonic responses. On the contrary, very high tonic and low clonic reactivity was observed in E13s and E15s. Periventricular nodular heterotopias (PNHs) were observed exclusively in E15s and E17s. Generally, the size of PNHs was correlated positively with susceptibility to tonic seizures but negatively with susceptibility to clonic seizures. Analogous correlations with the size of the neocortex were opposite. E13s and E19s had brains devoid PNHs but showed high tonic seizure susceptibility similar to that in E15s. It can therefore be concluded that PNHs modified the type of seizure reactivity from tonic to clonic, depending of their size, but the presence of PNHs was not necessary for the development of seizure susceptibility itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2013.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!