The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.10.032DOI Listing

Publication Analysis

Top Keywords

rate-limiting factors
12
rate-limiting factor
12
tenax extraction
8
enhanced anaerobic
8
anaerobic biodegradation
8
biodegradation pahs
8
conditions red
8
red paddy
8
paddy soil
8
nitrate addition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!