Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with (14)C-phenanthrene and (14)C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2013.10.039 | DOI Listing |
Iran J Parasitol
January 2024
Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.
Background: The aim of this study was to investigate the survival of and in decaying wild boar tissue and assess their freezing tolerance in experimentally infected animals.
Methods: The present study was conducted in Buenos Aires City, Argentina during the 2018-2019 period. Two wild boars were used, one infected with 20,000 muscle larvae (ML) of and the other with .
Sci Rep
December 2024
Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Continuous cropping obstacle has been becoming the bottleneck for the stable development of morel cultivation. The allelopathic effect of soil allelochemicals may play an instrumental role in the morel soil sickness. In this study, the allelochemicals were identified by gas chromatography-mass spectrometry (GC-MS) combined with in vitro bioassay.
View Article and Find Full Text PDFBiodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
This paper presents a ground motion prediction (GMP) model using an artificial neural network (ANN) for shallow earthquakes, aimed at improving earthquake hazard safety evaluation. The proposed model leverages essential input variables such as moment magnitude, fault type, epicentral distance, and soil type, with the output variable being peak ground acceleration (PGA) at 5% damping. To develop this model, 885 data pairs were obtained from the Pacific Engineering Research Center, providing a robust dataset for training and validation.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain.
There are many examples in nature in which the ability to detect is combined with decision-making, such as the basic survival instinct of plants and animals to search for food. We can technically translate this innate function via the use of robotics with integrated sensors and artificial intelligence. However, the integration of sensing capabilities into robotics has traditionally been neglected due to the significant associated technical challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!