Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In human cells, HCS catalyzes the biotinylation of biotin-dependent carboxylases and mediates the transcriptional control of genes involved in biotin metabolism through the activation of a cGMP-dependent signal transduction pathway. HCS also targets to the cell nucleus in association with lamin-B suggesting additional gene regulatory functions. Studies from our laboratory in Drosophila melanogaster showed that nuclear HCS is associated with heterochromatin bands enriched with the transcriptionally repressive mark histone 3 trimethylated at lysine 9. Further, HCS was shown to be recruited to the core promoter of the transcriptionally inactive hsp70 gene suggesting that it may participate in the repression of gene expression, although the mechanism involved remained elusive. In this work, we expressed HCS as a fusion protein with the DNA-binding domain of GAL4 to evaluate its effect on the transcription of a luciferase reporter gene. We show that HCS possesses transcriptional repressor activity in HepG2 cells. The transcriptional function of HCS was shown by in vitro pull down and in vivo co-immunoprecipitation assays to depend on its interaction with the histone deacetylases HDAC1, HDAC2 and HDAC7. We show further that HCS interaction with HDACs and its function in transcriptional repression is not affected by mutations impairing its biotin-ligase activity. We propose that nuclear HCS mediates events of transcriptional repression through a biotin-independent mechanism that involves its interaction with chromatin-modifying protein complexes that include histone deacetylases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymgme.2013.10.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!