Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.

Bioelectrochemistry

Biofilm Centre, Aquatische Biotechnologie, Fakultät für Chemie, Universität Duisburg-Essen, Essen, Germany. Electronic address:

Published: June 2014

Sulfate reducing prokaryotes are associated with the steel deterioration. They build heterogeneous biofilms, capable of accelerating corrosion processes. In this study metabolic activity and the biofilm development of Desulfovibrio alaskensis were correlated to electrochemical response of carbon steel surface. In the exponential growth phase sulfide concentration reached its maximum of about 10mM. This phenomenon was responsible for the parallel increase in the corrosion potential (Ecorr) up to -720mV (vs. SCE). Subsequently, during the intensive biofilm formation and development another Ecorr peak (-710mV vs. SCE) occurred. Decrease in Ecorr was registered during the biofilm maturation and kept stable, being 20mV lower than in the control. While carbon steel was protected from the microbial attachment and exposed to metabolic products, only one potential maximum (-730mV vs. SCE) was recorded. Here Ecorr variations coincided with sulfide concentration changes and kept at 120mV lower vs. the control. Weight loss examinations revealed corrosion rates, which did not exceed 0.05mm/y. Confocal microscopy suggested the importance of extracellular proteins in the biofilm formation. Above 150 proteins were detected in the EPS matrix. Surface effects of biofilm and metabolic products were visualised, revealing the role of attached microorganisms in the localised corrosion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2013.09.008DOI Listing

Publication Analysis

Top Keywords

carbon steel
12
desulfovibrio alaskensis
8
sulfide concentration
8
biofilm formation
8
lower control
8
metabolic products
8
corrosion
5
biofilm
5
impact desulfovibrio
4
alaskensis biofilms
4

Similar Publications

Organic Molecules Induce the Formation of Hopper-Like NaCl Crystals under Rapid Evaporation As Microcatalytic Reactors To Facilitate Micro/Nanoplastic Degradation.

Nano Lett

January 2025

Shanghai Applied Radiation Institute, Shanghai Key Laboratory of Atomic Control and Application of Inorganic 2D Supermaterials, State Key Lab. Advanced Special Steel, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, China.

As representative examples of inorganic ionic crystals, NaCl and KCl usually form cubes during the natural evaporation process. Herein, we report the hopper-like NaCl and KCl crystals formed on the iron surface under rapid vacuum evaporation aided by organic molecules. Theoretical and experimental results indicate that it is attributed to the organic molecules alternating adsorption between {100} and {110} surfaces instead of adsorbing a single surface, as well as the fast crystal growth rate.

View Article and Find Full Text PDF

Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

In recent years, the anti-corrosive properties of natural extracts as environmentally friendly inhibitors have gained considerable interest. This study evaluates the potential of ( L.) essential oil (), collected from Salé, Morocco, as a corrosion inhibitor for mild steel in 1 M HCl medium.

View Article and Find Full Text PDF

The behavior of low-carbon steels (LCSs), a high-strength steel and a nickel-chromium alloy in HCl solutions in the presence of N-containing organic substances has been studied. N-containing organic substances that comprise 1,2,4-triazole in their structure (substance I and substance II) provide comprehensive protection of various steel grades from corrosion and hydrogen absorption by the metal bulk in HCl solutions under both isobaric and isochoric conditions. All the compounds studied reduce, to varying degrees, the concentration of hydrogen adsorbed and absorbed by steel in HCl solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!