Forgetting heart break: a fascinating case of transient left ventricular apical ballooning syndrome associated with dissociative amnesia.

Gen Hosp Psychiatry

University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA. Electronic address:

Published: October 2014

Transient left ventricular apical ballooning syndrome (TLVABS), also known as takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction, electrocardiographic changes, and release of myocardial enzymes that mimic acute myocardial infarction in patients without angiographic evidence of coronary artery disease. Most patients are post-menopausal women and an emotional or physiologic stressor frequently precedes the presentation. Psychogenic or dissociative amnesia is a memory disorder characterized by sudden retrograde memory loss with inability to recall personal information said to occur for a period of time ranging from hours to years after a stressful event. Interestingly, the mechanism of both disorders has been linked to plasma elevation in catecholamines. Here we present the case of a 66-year-old female diagnosed with both TLVABS and dissociative amnesia following the sudden unexpected death of her sister. To our knowledge, this is surprisingly the first report of the co-occurrence of TLVABS and dissociative amnesia, two processes with a potential shared underlying etiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.genhosppsych.2013.10.007DOI Listing

Publication Analysis

Top Keywords

dissociative amnesia
16
transient left
12
left ventricular
12
ventricular apical
8
apical ballooning
8
ballooning syndrome
8
tlvabs dissociative
8
forgetting heart
4
heart break
4
break fascinating
4

Similar Publications

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Background: The mechanisms underlying generalized forms of dissociative ('psychogenic') amnesia are poorly understood. One theory suggests that memory retrieval is inhibited via prefrontal control. Findings from cognitive neuroscience offer a candidate mechanism for this proposed retrieval inhibition.

View Article and Find Full Text PDF

, "araticum-seco", is known to contain several bioactive compounds that can mitigate oxidative stress and act on the central nervous system (CNS). This effect is partly attributed to its potent antioxidant and acetylcholinesterase (AChE) inhibitors. In this study, the effects were explored of the methanolic extract (MEDF) and alkaloid fraction (AFDF) of (leaves) on cognitive behaviors in male mice with scopolamine (Scop)-induced cognitive impairment and biochemical parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the hippocampus (HPC) and amygdala in memory formation, particularly focusing on retrograde amnesia that occurs after HPC disruption.
  • Findings reveal that damage to the HPC does not affect conditioned place preference (CPP) tasks, which rely on the basolateral amygdala, suggesting that not all learning tasks require HPC involvement.
  • Additional experiments using the Morris water task indicate that while HPC damage impairs performance, other memory networks can't fully compensate when certain training methods are used, highlighting the complexity of memory processing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!