Ozone (O3) is one of the most harmful air pollutants to crops, contributing to high losses on crop yield. Tropospheric O3 background concentrations have increased since pre-industrial times reaching phytotoxic concentrations in many world regions. Capsicum peppers are the second most traded spice in the world, but few studies concerning the O3 effects in this genus are known. Thereby, the aim of this work was to evaluate the effects of chronic exposure to elevated O3 concentrations in red pepper plant Capsicum baccatum L. var. pendulum with especial considerations on the leaf redox state and fruit yield. Fifteen C. baccatum plants were exposed to O3 in open-top chambers during fruit ripening (62 days) at a mean concentration of 171.6 µg/m(3) from 10:00 am to 4:00 pm. We found that O3 treated plants significantly decreased the amount and the total weight of fruits, which were probably a consequence of the changes on leaf oxidative status induced by ozone exposure. Ozone exposed plants increased the reactive oxygen species (ROS) levels on the leaves, which may be associated with the observed decrease on the activity of enzymatic antioxidant defense system, as well with lower levels of polyphenol and reduced thiol groups. Enhanced ROS production and the direct O3 reaction lead to biomacromolecules damages as seen in the diminished chlorophyll content and in the elevated lipid peroxidation and protein carbonylation levels. Through a correlation analysis it was possible to observe that polyphenols content was more important to protect pepper plants against oxidative damages to lipids than to proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2013.09.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!