Background: This study investigates the impact of an automated image guided patient setup correction on the dose distribution for ten patients with in-field IMRT re-irradiation of vertebral metastases.

Methods: 10 patients with spinal column metastases who had previously been treated with 3D-conformal radiotherapy (3D-CRT) were simulated to have an in-field recurrence. IMRT plans were generated for treatment of the vertebrae sparing the spinal cord. The dose distributions were compared for a patient setup based on skin marks only and a Cone Beam CT (CBCT) based setup with translational and rotational couch corrections using an automatic robotic image guided couch top (Elekta - HexaPOD™ IGuide® - system). The biological equivalent dose (BED) was calculated to evaluate and rank the effects of the automatic setup correction for the dose distribution of CTV and spinal cord.

Results: The mean absolute value (± standard deviation) over all patients and fractions of the translational error is 6.1 mm (±4 mm) and 2.7° (±1.1 mm) for the rotational error. The dose coverage of the 95% isodose for the CTV is considerable decreased for the uncorrected table setup. This is associated with an increasing of the spinal cord dose above the tolerance dose.

Conclusions: An automatic image guided table correction ensures the delivery of accurate dose distribution and reduces the risk of radiation induced myelopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842751PMC
http://dx.doi.org/10.1186/1748-717X-8-269DOI Listing

Publication Analysis

Top Keywords

dose distribution
16
image guided
12
spinal column
8
column metastases
8
dose
8
patient setup
8
setup correction
8
correction dose
8
spinal cord
8
cord dose
8

Similar Publications

Purpose: This study aims to compare treatment plans created using RapidPlan and PlanIQ for twelve patients with prostate cancer, focusing on dose uniformity, dose reduction to organs at risk (OARs), plan complexity, and dose verification accuracy. The goal is to identify the tool that demonstrates superior performance in achieving uniform target dose distribution and reducing OAR dose, while ensuring accurate dose verification.

Methods: Dose uniformity in the planning target volume, excluding the rectum, and dose reduction in the OARs (the rectum and bladder) were assessed.

View Article and Find Full Text PDF

Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included.

View Article and Find Full Text PDF

Accelerator neutron sources for BNCT: Current status and some pointers for future development.

Appl Radiat Isot

January 2025

Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan.

Recent decades have seen the development of accelerator neutron sources suitable for installation in a hospital setting. Numerous challenges have been faced and solved to deliver technology which continues to transform the field of BNCT. This paper begins by briefly reviewing the technologies which are currently, or soon will be, in clinical use.

View Article and Find Full Text PDF

Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.

View Article and Find Full Text PDF

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!