Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of the triazine herbicide prometryne, commonly present in surface and ground waters, on oxidative stress and antioxidant status of common carp (Cyprinus carpio) were investigated. Fish were exposed to sublethal concentrations of prometryne (0.51, 8, and 80μg/l) for 14, 30, and 60 days. Activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), as well as levels of thiobarbituric acid reactive substances (TBARSs) were assessed in brain, gill, intestine, liver, and muscle. After 14 days exposure, decreased GR activity in brain was observed for all prometryne-exposed groups compared with the controls. Changes were observed in SOD activity in brain and gill after 30 days in all exposure groups. Changes in CAT activity were observed only at the highest concentration (80μg/l) in liver and intestine after 60 days. The observed effects on carp antioxidant systems may be a defense against oxidative damage. The study demonstrated changes in antioxidant parameters and the importance of evaluating the potential long-term risk to fish of prometryne, at environmentally realistic concentrations (0.51μg/l). The results suggest that antioxidant responses may have potential as biomarkers for monitoring residual triazine herbicides in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2012.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!