Background: Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity.
Results: The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida. Our results contrast previous findings based on rDNA sequences and phylogenomic datasets which supported monophyletic Polyzoa (= Bryozoa sensu lato) including Ectoprocta, Entoprocta and Cycliophora, Brachiozoa including Brachiopoda and Phoronida as well as Kryptrochozoa including Brachiopoda, Phoronida and Nemertea, thus rendering Lophophorata polyphyletic. Our attempts to identify the causes for the conflicting results revealed that Polyzoa, Brachiozoa and Kryptrochozoa are supported by character subsets with deviating amino acid compositions, whereas there is no indication for compositional heterogeneity in the character subsets supporting the monophyly of Lophophorata.
Conclusion: Our results indicate that the support for Polyzoa, Brachiozoa and Kryptrochozoa gathered so far is likely an artifact caused by compositional bias. The monophyly of Lophophorata implies that the horseshoe-shaped mesosomal lophophore, the tentacular feeding apparatus of ectoprocts, phoronids and brachiopods is, indeed, a synapomorphy of the lophophorate lineages. The same may apply to radial cleavage. However, among phoronids also spiral cleavage is known. This suggests that the cleavage pattern is highly plastic and has changed several times within lophophorates. The sister group relationship of ectoprocts and phoronids is in accordance with the interpretation of the eversion of a ventral invagination at the beginning of metamorphosis as a common derived feature of these taxa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225663 | PMC |
http://dx.doi.org/10.1186/1471-2148-13-253 | DOI Listing |
Zoology (Jena)
December 2020
Moscow State University, Biological Faculty, Dept. Invertebrate Zoology, 119991, Moscow, Russia; Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia. Electronic address:
The structure of the lophophore nervous system may help clarify the status of the clade Lophophorata, whose monophyly is debated. In the current study, antibody labeling and confocal laser scanning microscopy revealed previously undescribed main nerve elements in the lophophore in adult phoronids: Phoronis australis and Phoronopsis harmeri. In both species, the nervous system includes a dorsal ganglion, a tentacle nerve ring, an inner nerve ring, intertentacular groups of perikarya, and tentacle nerves.
View Article and Find Full Text PDFZoology (Jena)
April 2019
Dept. Invertebrate Zoology, Biological Faculty, Moscow State University, 1-12, Leninskie Gory, Moscow 119234, Russia. Electronic address:
The myoanatomy of adult phoronids has never been comprehensively studied by fluorescent staining and confocal laser scanning microscopy. Because the organization of the musculature may provide insight into phoronid biology and phylogeny, phoronid myoanatomy warrants detailed investigation. The current study provides the first description based on the use of modern methods of the musculature of the very small phoronid Phoronis ovalis.
View Article and Find Full Text PDFDokl Biol Sci
August 2016
Moscow State University, Moscow, 119992, Russia.
Lophophore innervation in the brachiopod Lingula anatina has been investigated using immunocytochemistry and laser confocal microscopy. Three prominent nerves, namely, the main brachial nerve, the accessory brachial nerve, and the lower brachial nerve, have been found to extend along each brachium of the lophophore. Tentacle innervation is also described in detail.
View Article and Find Full Text PDFPLoS One
January 2016
Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 117808, Russia.
Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates.
View Article and Find Full Text PDFBMC Evol Biol
November 2013
Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
Background: Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity.
Results: The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!