Background: OX40 ligand (OX40L) co-stimulates and differentiates T cells via ligation of OX40 that is transiently induced on T cells upon activation, resulting in prolonged T cell survival and enhanced cytokine production by T cells. This view has led to the targeting of OX40 as a strategy to boost antigen specific T cells in the context of vaccination. In addition, the ligation of OX40 has also been shown to inhibit infection by CCR5-utilizing (R5) but not CXCR4-utilizing (X4) human immunodeficiency virus type-1 (HIV-1) via enhancement of production of CCR5-binding β-chemokines. It was reasoned that human T cell leukemia virus type-I (HTLV-1) immortalized T cell lines that express high levels of OX40L could serve as an unique source of physiologically functional OX40L. The fact that HTLV-1+ T cell lines simultaneously also express high levels of OX40 suggested a potential limitation.

Results: Results of our studies showed that HTLV-1+ T cell lines bound exogenous OX40 but not OX40L, indicating that HTLV-1+ T cell lines express an active form of OX40L but an inactive form of OX40. Anti-OX40 non-blocking monoclonal antibody (mAb), but not blocking mAb, stained HTLV-1+ T cell lines, suggesting that the OX40 might be saturated with endogenous OX40L. Functionality of the OX40L was confirmed by the fact that a paraformaldehyde (PFA)-fixed HTLV-1+ T cell lines inhibited the infection of autologous activated peripheral blood mononuclear cells (PBMCs) with R5 HIV-1 which was reversed by either anti-OX40L blocking mAb or a mixture of neutralizing mAbs against CCR5-binding β-chemokines.

Conclusions: Altogether, these results demonstrated that autologous T cell lines immortalized by HTLV-1 can be utilized as a conventional source of physiologically functional OX40L.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225675PMC
http://dx.doi.org/10.1186/1743-422X-10-338DOI Listing

Publication Analysis

Top Keywords

cell lines
32
htlv-1+ cell
20
cell
11
human cell
8
cell leukemia
8
leukemia virus
8
lines
8
activated peripheral
8
peripheral blood
8
blood mononuclear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!