Proteomic characterization of serine hydrolase activity and composition in normal urine.

Clin Proteomics

Manitoba Centre for Proteomics & Systems Biology, 799 John Buhler Research Centre, 715 Mc Dermot Avenue, Winnipeg, Manitoba R3A 1R9, Canada.

Published: November 2013

Background: Serine hydrolases constitute a large enzyme family involved in a diversity of proteolytic and metabolic processes which are essential for many aspects of normal physiology. The roles of serine hydrolases in renal function are largely unknown and monitoring their activity may provide important insights into renal physiology. The goal of this study was to profile urinary serine hydrolases with activity-based protein profiling (ABPP) and to perform an in-depth compositional analysis.

Methods: Eighteen healthy individuals provided random, mid-stream urine samples. ABPP was performed by reacting urines (n = 18) with a rhodamine-tagged fluorophosphonate probe and visualizing on SDS-PAGE. Active serine hydrolases were isolated with affinity purification and identified on MS-MS. Enzyme activity was confirmed with substrate specific assays. A complementary 2D LC/MS-MS analysis was performed to evaluate the composition of serine hydrolases in urine.

Results: Enzyme activity was closely, but not exclusively, correlated with protein quantity. Affinity purification and MS/MS identified 13 active serine hydrolases. The epithelial sodium channel (ENaC) and calcium channel (TRPV5) regulators, tissue kallikrein and plasmin were identified in active forms, suggesting a potential role in regulating sodium and calcium reabsorption in a healthy human model. Complement C1r subcomponent-like protein, mannan binding lectin serine protease 2 and myeloblastin (proteinase 3) were also identified in active forms. The in-depth compositional analysis identified 62 serine hydrolases in urine independent of activity state.

Conclusions: This study identified luminal regulators of electrolyte homeostasis in an active state in the urine, which suggests tissue kallikrein and plasmin may be functionally relevant in healthy individuals. Additional serine hydrolases were identified in an active form that may contribute to regulating innate immunity of the urinary tract. Finally, the optimized ABPP technique in urine demonstrates its feasibility, reproducibility and potential applicability to profiling urinary enzyme activity in different renal physiological and pathophysiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225696PMC
http://dx.doi.org/10.1186/1559-0275-10-17DOI Listing

Publication Analysis

Top Keywords

serine hydrolases
32
identified active
16
enzyme activity
12
serine
10
hydrolases
8
in-depth compositional
8
healthy individuals
8
active serine
8
affinity purification
8
tissue kallikrein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!