Domain-general skills that mediate the relation between kindergarten number sense and first-grade mathematics skills were investigated. Participants were 107 children who displayed low number sense in the fall of kindergarten. Controlling for background variables, multiple regression analyses showed that both attention problems and executive functioning were unique predictors of mathematics outcomes. Attention problems were more important for predicting first-grade calculation performance, whereas executive functioning was more important for predicting first-grade performance on applied problems. Moreover, both executive functioning and attention problems were unique partial mediators of the relationship between kindergarten and first-grade mathematics skills. The results provide empirical support for developing interventions that target executive functioning and attention problems in addition to instruction in number skills for kindergartners with initial low number sense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883039 | PMC |
http://dx.doi.org/10.1016/j.jecp.2013.09.008 | DOI Listing |
Alzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Condensed extracellular matrix structures called perineuronal nets (PNNs) preferentially enwrap the soma and stabilize proximal synapses of parvalbumin-expressing inhibitory neurons in the cortex, serving as a protective barrier against neurotoxins. While PNN structural integrity declines in the healthy aging brain, this reduction is exacerbated in Alzheimer's disease (AD). In the 5xFAD mouse model of amyloidosis, the elimination of microglia prevents reductions in PNN, suggesting microglia are responsible for the over-degradation of PNNs observed in AD.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.
View Article and Find Full Text PDFAnal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFPain Res Manag
January 2025
Biostatistics Unit DRCI, University Hospital, Clermont-Ferrand, France.
The neuropathic characteristics of pain occurring after an osteoporosis (OP)-related fracture are often under-recognized. The aim of this pilot study is to identify, in patients suffering from pain localized on the site of a previous osteoporotic fracture, the presence of neuropathic characteristics, their medical management, and their impact on quality of life. This pilot cross-sectional study on consecutive patients in University Hospital, Rheumatology Department, Clermont-Ferrand, France, was approved by the Ethics Committee (IRB number 2023-CF34).
View Article and Find Full Text PDFNat Commun
January 2025
Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!