Mycorrhiza formation represents a significant carbon (C) acquisition alternative for orchid species, particularly those that remain achlorophyllous through all life stages. As it is known that orchid mycorrhizas facilitate nutrient transfer (most notably of C), it has not been resolved if C transfer occurs only after lysis of mycorrhizal structures (fungal pelotons) or also across the mycorrhizal interface of pre-lysed pelotons. We used high-resolution secondary ion mass spectrometry (nanoSIMS) and labelling with enriched (13) CO2 to trace C transfers, at subcellular scale, across mycorrhizal interfaces formed by Rhizanthella gardneri, an achlorphyllous orchid. Carbon was successfully traced in to the fungal portion of orchid mycorrhizas. However, we did not detect C movement across intact mycorrhizal interfaces up to 216 h post (13) CO2 labelling. Our findings provide support for the hypothesis that C transfer from the mycorrhizal fungus to orchid, at least for R. gardneri, likely occurs after lysis of the fungal peloton.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12230DOI Listing

Publication Analysis

Top Keywords

high-resolution secondary
8
secondary ion
8
ion mass
8
mass spectrometry
8
orchid mycorrhizas
8
occurs lysis
8
mycorrhizal interfaces
8
orchid
6
mycorrhizal
5
spectrometry analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!