Low-cost silicone imaging casts for zebrafish embryos and larvae.

Zebrafish

1 Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia .

Published: February 2014

Due to their size and optical clarity, zebrafish embryos have long been appreciated for their usefulness in time-lapse confocal microscopy. Current methods of mounting zebrafish embryos and larvae for imaging consist mainly of mounting in low percentage, low melting temperature agarose in a Petri dish. Whereas imaging methods have advanced greatly over the last two decades, the methods for mounting embryos have not changed significantly. In this article, we describe the development and use of 3D printed plastic molds. These molds can be used to create silicone casts and allow embryos and larvae to be mounted with a consistent and reproducible angle, and position in X, Y, and Z. These molds are made on a 3D printer and can be easily and cheaply reproduced by anyone with access to a 3D printer, making this method accessible to the entire zebrafish community. Molds can be reused to create additional casts, which can be reused after imaging. These casts are compatible with any upright microscope and can be adapted for use on an inverted microscope, taking the working distance of the objective used into account. This technique should prove to be useful to any researcher imaging zebrafish embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1089/zeb.2013.0897DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
16
embryos larvae
12
imaging casts
8
methods mounting
8
embryos
6
imaging
5
zebrafish
5
low-cost silicone
4
silicone imaging
4
casts
4

Similar Publications

Catheter-associated urinary tract infections (CAUTIs), often caused by biofilm-forming Staphylococcus aureus, present significant clinical challenges. Skt35, a dioxopiperidinamide derivative of cinnamic acid, was investigated for its potential antibacterial and antibiofilm activities against S. aureus biofilms.

View Article and Find Full Text PDF

Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish.

Nucleic Acids Res

January 2025

Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.

While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.

View Article and Find Full Text PDF

Unlabelled: Congenital NAD deficiency disorder (CNDD) is a multisystem condition in which cardiac, renal, vertebral, and limb anomalies are most common, but anomalies in all organ systems have been identified. Patients with this condition have biallelic pathogenic variants involving genes in the nicotinamide adenine dinucleotide (NAD ) synthesis pathway leading to decreased systemic NAD levels. CNDD anomalies mimic the clinical features described in vertebral-anal-cardiac-tracheoesophageal fistula-renal-limb (VACTERL) association raising the possibility that CNDD and VACTERL association possess similar underlying causes.

View Article and Find Full Text PDF

The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms.

View Article and Find Full Text PDF

Translation of mRNA into protein is a fundamental process and tightly controlled during development. Several mechanisms acting on the mRNA level regulate when and where an mRNA is expressed. To explore the effects of conditional and transient gene expression in a developing organism, it is vital to experimentally enable abrogation and restoration of translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!