Patients suffering from the severe complications associated with both insulin- (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM): nephropathy, retinopathy, neuropathy, and atherosclerosis are still largely left without a prospect of an efficient treatment. Chronic hyperglycaemia, the primary clinical manifestation of diabetes, is associated with development of certain of the diabetic complications. The accelerated formation of advanced glycation end-products (AGEs) due to elevated glycemia has repeatedly been reported as a central pathogenic factor in the development of diabetic microvascular complications. Glucose and α-dicarbonyl compounds chemically attach to proteins and nucleic acids without the aid of enzymes. Initially, chemically reversible Schiff base and Amadori product adducts form in proportion to glucose concentration. The major biological effects of excessive nonenzymatic glycosylation are leading to increased free radical production and compromised free radical inhibitory and scavenger systems, inactivation of enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated proteins and trapping of soluble proteins by glycosylated extracellular matrix (both may progress in the absence of glucose); decreased susceptibility to proteolysis; abnormalities of nucleic acid function; altered macromolecular recognition and endocytosis; and increased immunogenicity. The discovery of chemical agents that can inhibit deleterious glycation reactions is potentially of great therapeutic benefit to all diabetes-associated pathologies. This study demonstrates the progress in development of patented carnosine mimetics resistant in formulations to enzymatic hydrolysis with human carnosinases that are acting as a universal form of antioxidant, deglycating and transglycating agents that inhibit sugar-mediated protein cross-linking, chelate or inactivate a number of transition metal ions (including ferrous and copper ions), possess lipid peroxidase type of activity and protection of antioxidant enzymes from inactivation (such as in a case of superoxide dismutase). Carnosine biological mimetics react with methylglyoxal and they are described in this study as a glyoxalase mimetics. The imidazole-containing carnosine biological mimetics can react with a number of deleterious aldehydic products of lipid peroxidation and thereby suppress their toxicity. Carnosine and carcinine can also react with glycated proteins and inhibit advanced glycation end product formation. These studies indicate a therapeutic role for imidazole-containing antioxidants (non-hydrolized carnosine, carcinine, D-carnosine, ophthalmic prodrug N-acetylcarnosine, leucyl-histidylhidrazide and patented formulations thereof) in therapeutic management strategies for Type 2 Diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1872211307666131117121058 | DOI Listing |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.
Excessive daytime sleepiness is a common finding among type 2 diabetes mellitus patients. However there is scarce data that shows the magnitude of excessive daytime sleepiness, & its association with type 2 diabetes mellitus. Hence, the study aimed to assess the prevalence of excessive daytime sleepiness and its associated factors among type 2 diabetes mellitus patients at Wolkite University Specialized Hospital.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
No study has examined the association between dietary insulin load (DIL) and insulin index (DII) with developing gestational diabetes mellitus (GDM) during pregnancy. This study aimed to investigate the association between DIL and DII and risk of GDM in a group of pregnant women in Iran. In this prospective cohort study, 812 pregnant in their first trimester were recruited and followed.
View Article and Find Full Text PDFNutr Diabetes
December 2024
Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.
Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.
Small
December 2024
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!