A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cobalt(III) diazabutadiene precursors for metal deposition: nanoparticle and thin film growth. | LitMetric

We report the synthesis and characterization of a family of cobalt(III) metal precursors, based around cyclopentadienyl and diazabutadiene ligands. The molecular structure of the complexes cyclopentadienyl-Cobalt(III)(N,N'-dicyclohexyl-diazabutadiene) (2c) and cyclopentadienyl-Cobalt(III)(N,N'-dimesityl-diazabutadiene) (2d) are described, as determined by single crystal X-ray diffraction analysis. Thermogravimetric analysis of the complexes highlighted the isopropyl derivative CpCo((i)Pr2-dab) (2a) as a possible cobalt metal chemical vapor deposition (CVD) precursor. Atmospheric pressure CVD (AP-CVD) was employed using precursor 2a to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 250 °C, 275 °C, 300 °C, 325 °C, and 350 °C, respectively, by scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal temperature dependent growth features: films grown at 325 and 350 °C are continuous and pinhole free, whereas those films grown at substrate temperatures of 250 °C, 275 °C, and 300 °C consist of crystalline nanoparticles. Powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) all show the films to be high purity metallic cobalt. Raman spectroscopy has also been used to prove the absence of cobalt silicides at the substrate/thin film interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic402317gDOI Listing

Publication Analysis

Top Keywords

°c
9
x-ray diffraction
8
thin films
8
metallic cobalt
8
substrate temperatures
8
temperatures 250
8
250 °c
8
°c 275
8
275 °c
8
°c 300
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!