An Amazon soil microbial community metagenomic fosmid library was functionally screened for β-glucosidase activity. Contig analysis of positive clones revealed the presence of two ORFs encoding novel β-glucosidases, AmBGL17 and AmBGL18, from the GH3 and GH1 families, respectively. Both AmBGL17 and AmBGL18 were functionally identified as β-glucosidases. The enzymatic activity of AmBGL17 was further characterized. AmBGL17 was tested with different substrates and showed highest activity on pNPβG substrate with an optimum temperature of 45 °C and an optimum pH of 6. AmBGL17 showed a Vmax of 116 mM s(-1) and Km of 0.30 ± 0.017 mM. This is the first report of β-glucosidases from an Amazon soil microbial community using a metagenomic approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1574-6968.12332 | DOI Listing |
J Environ Manage
January 2025
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil. Electronic address:
Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil.
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.
Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).
Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.
J Environ Qual
December 2024
Departamento de Solos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
J Appl Microbiol
January 2025
Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!