Background: Nitric oxide (NO) is produced within the respiratory tract and can be detected in exhaled bronchial and nasal air. The concentration varies in specific diseases, being elevated in patients with asthma and bronchiectasis, but decreased in primary ciliary dyskinesia. In cystic fibrosis (CF), conflicting data exist on NO levels, which are reported unexplained as either decreased or normal. Functionally, NO production in the paranasal sinuses is considered as a location-specific first-line defence mechanism. The aim of this study was to investigate the correlation between upper and lower airway NO levels and blood inflammatory parameters, CF-pathogen colonisation, and clinical data.
Methods And Findings: Nasal and bronchial NO concentrations from 57 CF patients were determined using an electrochemical analyser and correlated to pathogen colonisation of the upper and lower airways which were microbiologically assessed from nasal lavage and sputum samples. Statistical analyses were performed with respect to clinical parameters (lung function, BMI), laboratory findings (CRP, leucocytes, total-IgG, fibrinogen), and anti-inflammatory and antibiotic therapy. There were significant correlations between nasal and bronchial NO levels (rho = 0.48, p<0.001), but no correlation between NO levels and specific pathogen colonisation. In patients receiving azithromycin, significantly reduced bronchial NO and a tendency to reduced nasal NO could be found. Interestingly, a significant inverse correlation of nasal NO to CRP (rho = -0.28, p = 0.04) and to leucocytes (rho = -0.41, p = 0.003) was observed. In contrast, bronchial NO levels showed no correlation to clinical or inflammatory parameters.
Conclusion: Given that NO in the paranasal sinuses is part of the first-line defence mechanism against pathogens, our finding of reduced nasal NO in CF patients with elevated systemic inflammatory markers indicates impaired upper airway defence. This may facilitate further pathogen acquisition in the sinonasal area, with consequences for lung colonisation and the overall outcome in CF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827333 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079141 | PLOS |
BMC Oral Health
January 2025
Basic Dental Sciences Department, Faculty of Dentistry, Zarqa University, PO Box 2000, Zarqa, 13110, Jordan.
Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.
Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.
Nat Mater
January 2025
Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
Sci Rep
January 2025
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.
Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.
View Article and Find Full Text PDFJ Complement Integr Med
January 2025
Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Alzheimers Dement
December 2024
PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.
Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!