Prehispanic use of chili peppers in Chiapas, Mexico.

PLoS One

Department of Geography and Anthropology, Kennesaw State University, Kennesaw, Georgia, United States of America.

Published: September 2014

The genus Capsicum is New World in origin and represents a complex of a wide variety of both wild and domesticated taxa. Peppers or fruits of Capsicum species rarely have been identified in the paleoethnobotanical record in either Meso- or South America. We report here confirmation of Capsicum sp. residues from pottery samples excavated at Chiapa de Corzo in southern Mexico dated from Middle to Late Preclassic periods (400 BCE to 300 CE). Residues from 13 different pottery types were collected and extracted using standard techniques. Presence of Capsicum was confirmed by ultra-performance liquid chromatography (UPLC)/MS-MS Analysis. Five pottery types exhibited chemical peaks for Capsicum when compared to the standard (dihydrocapsaicin). No peaks were observed in the remaining eight samples. Results of the chemical extractions provide conclusive evidence for Capsicum use at Chiapas de Corzo during a 700 year period (400 BCE-300 CE). Presence of Capsicum in different types of culinary-associated pottery raises questions how chili pepper could have been used during this early time period. As Pre-Columbian cacao products sometimes were flavored using Capsicum, the same pottery sample set was tested for evidence of cacao using a theobromine marker: these results were negative. As each vessel that tested positive for Capsicum had a culinary use we suggest here the possibility that chili residues from the Chiapas de Corzo pottery samples reflect either paste or beverage preparations for religious, festival, or every day culinary use. Alternatively, some vessels that tested positive merely could have been used to store peppers. Most interesting from an archaeological context was the presence of Capsicum residue obtained from a spouted jar, a pottery type previously thought only to be used for pouring liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827288PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079013PLOS

Publication Analysis

Top Keywords

presence capsicum
12
capsicum
10
residues pottery
8
pottery samples
8
pottery types
8
chiapas corzo
8
tested positive
8
pottery
7
prehispanic chili
4
chili peppers
4

Similar Publications

UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract.

J Food Sci

January 2025

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.

The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).

View Article and Find Full Text PDF

Biochar reduces containerized pepper blight caused by Phytophthora Capsici.

Sci Rep

December 2024

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.

Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.

View Article and Find Full Text PDF

Pepper (Capsicum annuum L.) is one of the most significant vegetable crops worldwide which is known for its pungency and nutritional value. The aldehyde dehydrogenase (ALDH) superfamily encompasses enzymes critical for the detoxification of toxic aldehydes into non-toxic carboxylic acids.

View Article and Find Full Text PDF

In this study, for the first time, the volatile fraction from two domesticated accessions ("Paprika" and "Baklouti") collected in Tunisia was investigated by two complementary analytical techniques, such as Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS) and Proton Transfer Reaction-Time-of-Flight-Mass Spectrometry (PTR-ToF-MS). The obtained results highlighted the presence of a high number of Volatile Organic Compounds (VOCs), including monoterpene and sesquiterpene compounds with -curcumene, I-zingiberene, -bisabolene and -sesquiphellandrene as the major components. In addition, GC/MS was used to investigate the non-volatile chemical composition of the dried powders and their extracts, which were found to be rich in sulfur compounds, fatty acids and sugars.

View Article and Find Full Text PDF

First report of paprika as a natural host plant for tomato chlorosis virus in Korea.

Plant Dis

November 2024

Gyengsangnamado Agricultural Research and Extension Services, 570 Daesin-ro, jinju-si, Gyeongnam, Republic of korea, Jinju, Gyeongnam, Korea (the Republic of), 52733;

Article Synopsis
  • Paprika, a key greenhouse crop in Korea, saw a production of 82,042 tons in 2022 but faced increased disease issues in 2023, particularly interveinal chlorosis linked to whitefly infestations.
  • Observations from five farms indicated a 30-40% incidence of disease, likely due to the transmission of the tomato chlorosis virus (ToCV) by whiteflies, confirmed through electron microscopy and RT-PCR testing.
  • High-throughput sequencing of the virus confirmed the presence of ToCV and also yielded sequences related to bell pepper alphaendornavirus, indicating multiple viral threats to pepper crops.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!