Deriving tractable reduced equations of biological neural networks capturing the macroscopic dynamics of sub-populations of neurons has been a longstanding problem in computational neuroscience. In this paper, we propose a reduction of large-scale multi-population stochastic networks based on the mean-field theory. We derive, for a wide class of spiking neuron models, a system of differential equations of the type of the usual Wilson-Cowan systems describing the macroscopic activity of populations, under the assumption that synaptic integration is linear with random coefficients. Our reduction involves one unknown function, the effective non-linearity of the network of populations, which can be analytically determined in simple cases, and numerically computed in general. This function depends on the underlying properties of the cells, and in particular the noise level. Appropriate parameters and functions involved in the reduction are given for different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models. Simulations of the reduced model show a precise agreement with the macroscopic dynamics of the networks for the first two models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827287 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078917 | PLOS |
J Phys Chem Lett
January 2025
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
The behavior of supercooled glass-forming metals depends on the cooperative atomic fluctuations caused by dynamic heterogeneities in the melt. These spatial and temporal heterogeneities form dynamic clusters, which are regions of cooperative rearrangement (CRR). In this study, the macroscopic kinetics and the correlation length , of the CRR, are derived for PtCuNiP and PdCuNiP metallic glass-formers by fast differential scanning calorimetry near the glass transition.
View Article and Find Full Text PDFAnat Sci Educ
January 2025
Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
This study describes the process of developing a high-impact, low-cost, and low-maintenance air ventilation system for anatomy facilities. It employed the strategic application of Value Engineering (VE), assuring that the air ventilation system meets contemporary threshold limit values (TLVs) for formaldehyde in the working zone of dissection tables. A creative-innovative construction methodology was used, combining the Theory of Inventive Problem Solving (TRIZ/TIPS) and VE for an anatomy laboratory air ventilation concept.
View Article and Find Full Text PDFSoft Matter
January 2025
Politecnico di Milano, 20133 Milano, Italy.
Identical, inelastic spheres crystallize when sheared between two parallel, bumpy planes under a constant load larger than a minimum value. We investigate the effect of the inter-particle friction coefficient of the sheared particles on the flow dynamics and the crystallization process with discrete element simulations. If the imposed load is about the minimum value to observe crystallization in frictionless spheres, adding small friction to the granular assembly results in a shear band adjacent to one of the planes and one crystallized region, where a plug flow is observed.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Department of Clinical Anatomy, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
Background: Biomechanical studies suggest that the triceps brachii muscle generates resistive force against valgus stress on the elbow during baseball pitching. However, given the parallel fiber orientation in the distal tendinous structure of the triceps brachii, the mechanism behind this anti-valgus force remains unclear. In the present study, we aimed to examine the anatomy of the distal tendinous structure of the triceps brachii using bony morphological, macroscopic, and histological methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China.
As an effective method to enhance the dielectric performance of polyolefin materials, polar side group modification has been extensively applied in the insulation and energy storage materials of electrical and electronic systems. In this work, two side groups with different topological structures were adopted, namely, vinyl acetate (VAc, aliphatic chain) and -vinyl-pyrrolidone (NVP, saturated ring), to modify polypropylene (PP) chemical grafting, and the effects of structural topology of the polar side group on the microscopic and macroscopic characteristics of PP, particularly on its electrical anti-breakdown ability, were investigated. Experimental results showed that the side group structural topology directly affected the crystallization and thermal properties of PP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!