We describe the characterization and purification of a trypsin-like serine protease isolated from cloned long-term culture cytolytic T cell line (CTLL AK). High amounts of proteolytic activity were isolated from extracts of CTLL AK after either nitrogen cavitation or detergent lysis. Trypsin-like protease was detected by using either the ester compound N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester or a panel of low molecular amide substrates. The latter compounds were preferentially cleaved at the carboxyl termini of lysine and arginine residues. The enzyme activity was completely inhibited by two serine esterase inhibitors, diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and by aprotinin and meta-aminobenzamidine, which are known to block trypsin-like proteases. The pH optimum for CTLL AK-derived protease activity is 8 to 9. Analysis of the enzyme by gel filtration revealed that the cell-bound proteolytic activity was associated with a complex that could not be dissociated by treatment with Triton X-100. The CTLL AK-derived protease activity was found to reside in two proteins with relative molecular masses (Mr) of 32,000 and 40,000 daltons as determined by affinity labeling with [3H]diisopropylfluorophosphate and sodium dodecyl sulfate gel electrophoresis. High levels of enzyme activity were found in a panel of H-Y-specific cloned T cell lines with either cytolytic/suppressor (CTLL) or helper potential (THL), indicating a lack of correlation between trypsin-like protease activity and a particular T cell function. High enzyme activity was also detected in tumorigenic variants of CTLL. Furthermore, it was excluded that the trypsin-like activity detected was attributable to plasminogen activator activity. In contrast to cloned T effector cells and their in vitro or in vivo derived variants, considerably less activity was found in normal nonactivated or activated lymphocyte populations. The possible role of the trypsin-like serine protease in the function of T effector cells is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

trypsin-like serine
12
serine protease
12
enzyme activity
12
protease activity
12
activity
11
long-term culture
8
culture cytolytic
8
cytolytic cell
8
proteolytic activity
8
trypsin-like protease
8

Similar Publications

First-generation high-affinity ST14 radiopharmaceutical: Design, synthesis, and preclinical PET imaging evaluation for pancreatic cancer detection.

Bioorg Chem

December 2024

Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China. Electronic address:

The non-specificity of F-FDG, coupled with high false-positive rates in pancreatitis, underscores an unmet clinical need for using specific positron emission tomography (PET) radiopharmaceuticals in noninvasive pancreatic cancer detection. ST14, a trypsin-like protease and a member of the type II transmembrane serine protease family, is overexpressed in various solid malignancies, including pancreatic cancer. This study aimed to develop a Ga-labeled PET radiopharmaceutical targeting ST14 for pancreatic cancer detection.

View Article and Find Full Text PDF

A novel digestive protease chymotrypsin-like serine contributes to anti-BmNPV activity in silkworm (Bombyxmori).

Dev Comp Immunol

December 2024

Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China. Electronic address:

Serine proteases (SPs) are important proteases in the digestive system of lepidopteran insects. They play important roles in protein digestion, coagulation, signal transduction, hormone activation, inflammation and development. Blood-borne pyosis caused by Bombyx mori nuclear polyhedrosis virus (BmNPV) has caused serious harm to sericulture.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed how specific mutations at Asp187 and Ser188 in the protease cocoonase (CCN) affect its ability to recognize substrates and carry out enzymatic activity.
  • Mutations at Asp187 significantly reduced enzymatic activity, highlighting its key role, while changes at Ser188 had a lesser impact but still contributed to substrate recognition.
  • Substituting Asp187 with other residues resulted in new substrate specificities, suggesting that the structure of the precursors remains stable, which may affect how the enzyme interacts with substrates and its overall catalytic function.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers purified this protease and found it to be most effective at 35 °C and pH 8.0, showing significant nematicidal activity by inhibiting egg hatching and damaging egg contents.
  • * The findings suggest that this protease could be used as a biocontrol agent to manage harmful nematode populations, offering a natural solution to agricultural challenges.
View Article and Find Full Text PDF

Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases.

Int J Mol Sci

November 2024

Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.

Article Synopsis
  • Subtilisin-like proteins are a type of serine protease that use two distinct catalytic triads: Ser-His-Asp and Ser-Glu-Asp.
  • The study examines two families of these proteins, subtilases and serine-carboxyl proteinases, focusing on the structural arrangements that dictate the catalytic activity.
  • It also highlights the conserved structural zones within these proteins and compares their cores with those found in other protease families like trypsin-like serine proteases and alpha/beta-hydrolases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!